rescue - nets:用于三维显微数据分割的循环U-Nets。

IF 6.4 1区 生物学 Q1 CELL BIOLOGY
Journal of Cell Biology Pub Date : 2025-11-03 Epub Date: 2025-08-11 DOI:10.1083/jcb.202506102
Raymond Hawkins, Negar Balaghi, Katheryn E Rothenberg, Michelle Ly, Rodrigo Fernandez-Gonzalez
{"title":"rescue - nets:用于三维显微数据分割的循环U-Nets。","authors":"Raymond Hawkins, Negar Balaghi, Katheryn E Rothenberg, Michelle Ly, Rodrigo Fernandez-Gonzalez","doi":"10.1083/jcb.202506102","DOIUrl":null,"url":null,"abstract":"<p><p>Segmenting multidimensional microscopy data requires high accuracy across many images (e.g., time points or Z slices) and is thus a labor-intensive part of biological image processing pipelines. We present ReSCU-Nets, recurrent convolutional neural networks that use the segmentation results from the previous image in a sequence as a prompt to segment the current image. We demonstrate that ReSCU-Nets outperform state-of-the-art image segmentation models, including nnU-Net and the Segment Anything Model, in different segmentation tasks on time-lapse microscopy sequences. Furthermore, ReSCU-Nets enable human-in-the loop corrections that prevent propagation of segmentation errors throughout image sequences. Using ReSCU-Nets, we investigate the role of gap junctions during Drosophila embryonic wound healing. We show that pharmacological blocking of gap junctions slows down wound closure by disrupting cytoskeletal polarity and cell shape changes necessary to repair the wound. Our results demonstrate that ReSCU-Nets enable the analysis of the molecular and cellular dynamics of tissue morphogenesis from multidimensional microscopy data.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"224 11","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ReSCU-Nets: Recurrent U-Nets for segmentation of three-dimensional microscopy data.\",\"authors\":\"Raymond Hawkins, Negar Balaghi, Katheryn E Rothenberg, Michelle Ly, Rodrigo Fernandez-Gonzalez\",\"doi\":\"10.1083/jcb.202506102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Segmenting multidimensional microscopy data requires high accuracy across many images (e.g., time points or Z slices) and is thus a labor-intensive part of biological image processing pipelines. We present ReSCU-Nets, recurrent convolutional neural networks that use the segmentation results from the previous image in a sequence as a prompt to segment the current image. We demonstrate that ReSCU-Nets outperform state-of-the-art image segmentation models, including nnU-Net and the Segment Anything Model, in different segmentation tasks on time-lapse microscopy sequences. Furthermore, ReSCU-Nets enable human-in-the loop corrections that prevent propagation of segmentation errors throughout image sequences. Using ReSCU-Nets, we investigate the role of gap junctions during Drosophila embryonic wound healing. We show that pharmacological blocking of gap junctions slows down wound closure by disrupting cytoskeletal polarity and cell shape changes necessary to repair the wound. Our results demonstrate that ReSCU-Nets enable the analysis of the molecular and cellular dynamics of tissue morphogenesis from multidimensional microscopy data.</p>\",\"PeriodicalId\":15211,\"journal\":{\"name\":\"Journal of Cell Biology\",\"volume\":\"224 11\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1083/jcb.202506102\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1083/jcb.202506102","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

分割多维显微镜数据需要跨许多图像(例如,时间点或Z切片)的高精度,因此是生物图像处理管道的劳动密集型部分。我们提出了rescue - nets,这是一种循环卷积神经网络,它使用序列中先前图像的分割结果作为分割当前图像的提示。我们证明了在延时显微镜序列的不同分割任务中,rescue - nets优于最先进的图像分割模型,包括nnU-Net和Segment Anything Model。此外,rescue - nets还可以进行人工循环校正,防止分割错误在整个图像序列中传播。使用rescue - nets,我们研究了间隙连接在果蝇胚胎伤口愈合中的作用。我们表明,通过破坏修复伤口所必需的细胞骨架极性和细胞形状变化,药物阻断间隙连接减缓了伤口闭合。我们的研究结果表明,rescue - nets能够从多维显微镜数据中分析组织形态发生的分子和细胞动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ReSCU-Nets: Recurrent U-Nets for segmentation of three-dimensional microscopy data.

Segmenting multidimensional microscopy data requires high accuracy across many images (e.g., time points or Z slices) and is thus a labor-intensive part of biological image processing pipelines. We present ReSCU-Nets, recurrent convolutional neural networks that use the segmentation results from the previous image in a sequence as a prompt to segment the current image. We demonstrate that ReSCU-Nets outperform state-of-the-art image segmentation models, including nnU-Net and the Segment Anything Model, in different segmentation tasks on time-lapse microscopy sequences. Furthermore, ReSCU-Nets enable human-in-the loop corrections that prevent propagation of segmentation errors throughout image sequences. Using ReSCU-Nets, we investigate the role of gap junctions during Drosophila embryonic wound healing. We show that pharmacological blocking of gap junctions slows down wound closure by disrupting cytoskeletal polarity and cell shape changes necessary to repair the wound. Our results demonstrate that ReSCU-Nets enable the analysis of the molecular and cellular dynamics of tissue morphogenesis from multidimensional microscopy data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cell Biology
Journal of Cell Biology 生物-细胞生物学
CiteScore
12.60
自引率
2.60%
发文量
213
审稿时长
1 months
期刊介绍: The Journal of Cell Biology (JCB) is a comprehensive journal dedicated to publishing original discoveries across all realms of cell biology. We invite papers presenting novel cellular or molecular advancements in various domains of basic cell biology, along with applied cell biology research in diverse systems such as immunology, neurobiology, metabolism, virology, developmental biology, and plant biology. We enthusiastically welcome submissions showcasing significant findings of interest to cell biologists, irrespective of the experimental approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信