Claire C Weckerly, Taylor A Rahn, Max Ehrlich, Rachel C Wills, Joshua G Pemberton, Michael V Airola, Gerald R V Hammond
{"title":"PILS-Nir1是一种敏感的磷脂酸生物传感器,可以揭示脂质产生的机制。","authors":"Claire C Weckerly, Taylor A Rahn, Max Ehrlich, Rachel C Wills, Joshua G Pemberton, Michael V Airola, Gerald R V Hammond","doi":"10.1083/jcb.202405174","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphatidic acid (PA) regulates lipid homeostasis and vesicular trafficking, yet high-affinity tools to study PA in live cells are lacking. We identified the lipin-like sequence of Nir1 (PILS-Nir1) as a candidate PA biosensor based on structural analysis of Nir1's LNS2 domain. Using liposome-binding assays and pharmacological and genetic manipulations in HEK293A cells expressing fluorescent PILS-Nir1, we found that while PILS-Nir1 binds PA and PIP2in vitro, only PA is necessary and sufficient for membrane localization in cells. PILS-Nir1 displayed greater sensitivity to organelle-generated PA than Spo20-based probes, enabling visualization of modest PA production by PLD downstream of muscarinic receptors-previously undetectable with existing biosensors. Thus, PILS-Nir1 provides a versatile, sensitive tool for real-time PA dynamics in live cells.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"224 11","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12419160/pdf/","citationCount":"0","resultStr":"{\"title\":\"PILS-Nir1 is a sensitive phosphatidic acid biosensor that reveals mechanisms of lipid production.\",\"authors\":\"Claire C Weckerly, Taylor A Rahn, Max Ehrlich, Rachel C Wills, Joshua G Pemberton, Michael V Airola, Gerald R V Hammond\",\"doi\":\"10.1083/jcb.202405174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phosphatidic acid (PA) regulates lipid homeostasis and vesicular trafficking, yet high-affinity tools to study PA in live cells are lacking. We identified the lipin-like sequence of Nir1 (PILS-Nir1) as a candidate PA biosensor based on structural analysis of Nir1's LNS2 domain. Using liposome-binding assays and pharmacological and genetic manipulations in HEK293A cells expressing fluorescent PILS-Nir1, we found that while PILS-Nir1 binds PA and PIP2in vitro, only PA is necessary and sufficient for membrane localization in cells. PILS-Nir1 displayed greater sensitivity to organelle-generated PA than Spo20-based probes, enabling visualization of modest PA production by PLD downstream of muscarinic receptors-previously undetectable with existing biosensors. Thus, PILS-Nir1 provides a versatile, sensitive tool for real-time PA dynamics in live cells.</p>\",\"PeriodicalId\":15211,\"journal\":{\"name\":\"Journal of Cell Biology\",\"volume\":\"224 11\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12419160/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1083/jcb.202405174\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1083/jcb.202405174","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
PILS-Nir1 is a sensitive phosphatidic acid biosensor that reveals mechanisms of lipid production.
Phosphatidic acid (PA) regulates lipid homeostasis and vesicular trafficking, yet high-affinity tools to study PA in live cells are lacking. We identified the lipin-like sequence of Nir1 (PILS-Nir1) as a candidate PA biosensor based on structural analysis of Nir1's LNS2 domain. Using liposome-binding assays and pharmacological and genetic manipulations in HEK293A cells expressing fluorescent PILS-Nir1, we found that while PILS-Nir1 binds PA and PIP2in vitro, only PA is necessary and sufficient for membrane localization in cells. PILS-Nir1 displayed greater sensitivity to organelle-generated PA than Spo20-based probes, enabling visualization of modest PA production by PLD downstream of muscarinic receptors-previously undetectable with existing biosensors. Thus, PILS-Nir1 provides a versatile, sensitive tool for real-time PA dynamics in live cells.
期刊介绍:
The Journal of Cell Biology (JCB) is a comprehensive journal dedicated to publishing original discoveries across all realms of cell biology. We invite papers presenting novel cellular or molecular advancements in various domains of basic cell biology, along with applied cell biology research in diverse systems such as immunology, neurobiology, metabolism, virology, developmental biology, and plant biology. We enthusiastically welcome submissions showcasing significant findings of interest to cell biologists, irrespective of the experimental approach.