Evalien Duyvesteyn, Velia S Vizcarra, Emma Waight, Estephanie Balbuena, Lauren M Hablitz
{"title":"Biological Fluid Flows: Signaling Mediums for Circadian Timing.","authors":"Evalien Duyvesteyn, Velia S Vizcarra, Emma Waight, Estephanie Balbuena, Lauren M Hablitz","doi":"10.1177/07487304251323318","DOIUrl":"10.1177/07487304251323318","url":null,"abstract":"<p><p>While there is extensive literature on both the neuronal circuitry of rhythms and the intracellular molecular clock, there is a large component of signaling that has been understudied: interstitial fluid (ISF)-fluid that surrounds the cells in the extracellular space of tissue. In this review, we highlight evidence in the circadian literature supporting ISF signaling as key to circadian synchronization and entrainment and propose new mechanisms of how fluid movement between the brain and periphery may act as zeitgebers by examining the main ISF pathways of the body, focusing on circadian regulation of the glymphatic and lymphatic systems. We identify key pieces of circadian research that point to ISF as an important timing medium, expand on the basics of cerebrospinal fluid (CSF) and ISF production, and outline the basic structure and function of the glymphatic and lymphatic systems.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"234-248"},"PeriodicalIF":2.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12088906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143719338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mirim Shin, Joanne S Carpenter, Shin H Park, Connie Janiszewski, Emiliana Tonini, Sarah McKenna, Gabrielle Hindmarsh, Frank Iorfino, Alissa Nichles, Natalia Zmicerevska, Elizabeth M Scott, Benjamin L Smarr, Ian B Hickie, Jacob J Crouse
{"title":"Twenty-four-hour Skin Temperature Rhythms in Young People With Emerging Mood Disorders: Relationships With Illness Subtypes and Clinical Stage.","authors":"Mirim Shin, Joanne S Carpenter, Shin H Park, Connie Janiszewski, Emiliana Tonini, Sarah McKenna, Gabrielle Hindmarsh, Frank Iorfino, Alissa Nichles, Natalia Zmicerevska, Elizabeth M Scott, Benjamin L Smarr, Ian B Hickie, Jacob J Crouse","doi":"10.1177/07487304251328501","DOIUrl":"10.1177/07487304251328501","url":null,"abstract":"<p><p>While circadian disruptions are common in some sub-groups of youth with mood disorders, skin temperature rhythms in these cohorts are understudied. We examined 24-h wrist skin temperature rhythms in youth with emerging mood disorders, exploring associations with clinical stage and proposed illness subtypes. Youth (<i>n</i> = 306, 23.42 ± 4.91 years, 65% females) accessing mental health care and 48 healthy controls (23.44 ± 3.38 years, 60% females) were examined. Skin temperature parameters including rhythm-adjusted mean temperature, inter-daily stability (day-to-day consistency), intra-daily variability (rhythm fragmentation), and peak temperature time were derived from a wearable sensor. Based on our illness trajectory-pathophysiology model, participants were classified by mood disorder subtypes (\"hyperarousal-anxious\" [<i>n</i> = 209], \"neurodevelopmental-psychosis\" [<i>n</i> = 40], or \"circadian-bipolar spectrum\" [<i>n</i> = 43]), as well as by clinical stage (subthreshold disorders classed as 1a or 1b [<i>n</i> = 47, 173, respectively], and full-threshold disorders as 2+ [<i>n</i> = 76]). Compared to controls, youth with mood disorders had delayed, less stable, and more variable skin temperature rhythms, indicated by lower rhythm-adjusted mean skin temperature (29.94 ± 0.10 °C vs 31.04 ± 0.25 °C, <i>p</i> < 0.001), delayed peak timing (0533 ± 0014 vs 0332 ± 0036, <i>p</i> = 0.002), reduced inter-daily stability (<i>p</i> = 0.009), and increased intra-daily variability (<i>p</i> = 0.020). Peak skin temperature also occurred later relative to sleep midpoint (0.31 ± 0.14 vs -0.48 ± 0.35 radians, <i>p</i> = 0.037). The \"circadian-bipolar spectrum\" subtype exhibited lower relative amplitude (0.07 ± 0.005 vs 0.08 ± 0.002 [hyperarousal-anxious] and 0.09 ± 0.005 [neurodevelopmental-psychosis], <i>p</i> = 0.039), with no delay in sleep midpoint. Clinical stages were not associated with differences in skin temperature parameters. These findings highlight the potential of use of 24-h skin temperature rhythms as a non-invasive biomarker of circadian disturbances in youth with emerging mood disorders. The observed disruptions in temperature patterns and rhythmicity support the notion that disrupted circadian rhythms may mediate the onset or illness course of some subgroups of youth with emerging major mood disorders.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"262-274"},"PeriodicalIF":2.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12085744/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144005245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victor Y Zhang, G J Kenagy, Horacio O de la Iglesia
{"title":"Daytime aversive stimuli do not phase shift behavioral rhythms under light-dark cycles in a strictly diurnal rodent.","authors":"Victor Y Zhang, G J Kenagy, Horacio O de la Iglesia","doi":"10.1177/07487304251321214","DOIUrl":"10.1177/07487304251321214","url":null,"abstract":"<p><p>Recent studies have shown that cyclic aversive stimuli (time-specific footshocks) act as a nonphotic zeitgeber, shifting circadian behaviors to the daytime in nocturnal rodents through entrainment. It has remained untested whether diurnal species exhibit similar plasticity in behavioral timing. This study investigated whether antelope ground squirrels (<i>Ammospermophilus leucurus</i>, AGS), naturally diurnal rodents, shift activity timing in response to cyclic aversive stimuli delivered at specific phases of the light-dark (LD) cycle. We conducted two experiments with 20 AGS housed in custom cages featuring a safe nesting area and a separate foraging area rendered potentially aversive by unsignaled time-specific footshocks. In Experiment 1, animals were subjected to a 12:12 LD cycle. One group was exposed to a foraging area that produced footshocks during the light phase, and a control group with footshocks during the dark phase. In Experiment 2, under a 16:8 LD cycle, animals were divided into three groups, with footshock exposure either during the first or second half of the light phase or during the dark phase. Following treatments, animals were released into constant darkness (DD) to assess free-running rhythms. Contrary to findings in nocturnal rodents, AGS did not exhibit consistent complementary shifts to nocturnal activity as an avoidance of footshocks received during daytime. Most animals maintained diurnal activity, showing minor, and inconsistent phase adjustments. In Experiment 2, animals exposed to footshocks during part of the light phase also failed to reliably shift activity to the \"safe\" portion of the light phase. These findings show AGS do not substantially shift activity patterns in response to cyclic aversive stimuli and that a 24-h cyclic fear stimulus fails to override the LD cycle as a zeitgeber. This suggests a lack of plasticity in circadian behavior and highlights the importance of species-specific differences in response to potential nonphotic zeitgebers.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"275-286"},"PeriodicalIF":2.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12088908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143719340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Direct Temperature Responses of <i>Bmal1</i> and <i>Per2</i> in Reindeer Fibroblasts: Insight Into a Unique Circadian Clock Adaptation to Polar Environments.","authors":"S K Tahajjul Taufique","doi":"10.1177/07487304251327871","DOIUrl":"10.1177/07487304251327871","url":null,"abstract":"","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"231-233"},"PeriodicalIF":2.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12085748/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143692226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dosing Time of Day Impacts the Safety of Antiarrhythmic Drugs in a Computational Model of Cardiac Electrophysiology.","authors":"Ning Wei, Casey O Diekman","doi":"10.1177/07487304251326628","DOIUrl":"10.1177/07487304251326628","url":null,"abstract":"<p><p>Circadian clocks regulate many aspects of human physiology, including cardiovascular function and drug metabolism. Administering drugs at optimal times of the day may enhance effectiveness and reduce side effects. Certain cardiac antiarrhythmic drugs have been withdrawn from the market due to unexpected proarrhythmic effects such as fatal Torsade de Pointes (TdP) ventricular tachycardia. The Comprehensive in vitro Proarrhythmia Assay (CiPA) is a recent global initiative to create guidelines for the assessment of drug-induced arrhythmias that recommends a central role for computational modeling of ion channels and <i>in silico</i> evaluation of compounds for TdP risk. We simulated circadian regulation of cardiac excitability and explored how dosing time of day affects TdP risk for 11 drugs previously classified into risk categories by CiPA. The model predicts that a high-risk drug taken at the most optimal time of day may actually be safer than a low-risk drug taken at the least optimal time of day. Based on these proof-of-concept results, we advocate for the incorporation of circadian clock modeling into the CiPA paradigm for assessing drug-induced TdP risk. Since cardiotoxicity is the leading cause of drug discontinuation, modeling cardiac-related chronopharmacology has significant potential to improve therapeutic outcomes.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"301-310"},"PeriodicalIF":2.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144021749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dongju Lim, Su Jung Choi, Yun Min Song, Hea Ree Park, Eun Yeon Joo, Jae Kyoung Kim
{"title":"Enhanced Circadian Phase Tracking: A 5-h DLMO Sampling Protocol Using Wearable Data.","authors":"Dongju Lim, Su Jung Choi, Yun Min Song, Hea Ree Park, Eun Yeon Joo, Jae Kyoung Kim","doi":"10.1177/07487304251317577","DOIUrl":"10.1177/07487304251317577","url":null,"abstract":"<p><p>Circadian medicine aims to leverage the body's internal clock to develop safer and more effective therapeutics. Traditionally, biological time has been estimated using dim light melatonin onset (DLMO), a method that requires collecting saliva samples over a long period under controlled conditions, to ensure the observation of DLMO, making it time-consuming and labor-intensive. While some studies have mitigated this by reducing the length of the sampling window, they significantly failed to identify the DLMO for shift workers. In this study, we present a framework that reduces the DLMO experiment time for shift workers to just 5 h. This approach combines sleep-wake pattern data from wearable devices with a mathematical model to predict DLMO prospectively. Based on this prediction, we define a targeted 5-h sampling window, from 3 h before to 2 h after the estimated DLMO. Testing this framework with 19 shift workers, we successfully identified the DLMO for all participants, whereas traditional methods failed for more than 40% of participants. This approach significantly reduces the experiment time required for measuring the DLMO of shift workers from 24 h to 5 h, simplifying the circadian phase measurements for shift workers.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"249-261"},"PeriodicalIF":2.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Milene G Jannetti, Veronica S Valentinuzzi, Gisele A Oda
{"title":"Use of Hidden Markov Models to Identify Behavioral Patterns in Accelerometry Data of Subterranean Rodents in Field Enclosures.","authors":"Milene G Jannetti, Veronica S Valentinuzzi, Gisele A Oda","doi":"10.1177/07487304241313149","DOIUrl":"10.1177/07487304241313149","url":null,"abstract":"<p><p>Activity rhythms of laboratory rodents are usually measured by running wheels, and although wheel running activity-or-rest data enable straightforward rhythmic analyses, it provides limited behavioral information. In subterranean rodents (tuco-tucos), we used bio-loggers (accelerometers) to measure activity rhythms in both lab and field conditions, detecting diverse movements that compose activity. However, understanding these different accelerometer-detected activity components requires more complex analytical tools. Here we used supervised hidden Markov models (HMMs) as a machine learning analysis, to identify behavioral patterns in accelerometer data of tuco-tucos from field enclosures and characterize their behavioral rhythms in this condition. Activity of tuco-tucos was previously video-recorded in the laboratory with simultaneous accelerometer measurements. Video-obtained behavioral data were used in HMM models to refine (train) the classification of accelerometer recordings into different behavioral states. The classification obtained by HMM matched in 93% the one obtained by the video-observed method. Trained models were then used to automatically extract behavior information from accelerometers attached to 20 unobserved tuco-tucos first maintained in field enclosures and then transferred to the laboratory. Activity bouts associated with digging and locomotion were responsible for the diurnal rhythm in field enclosures and the nocturnal rhythm in the laboratory. Bouts of activity spread throughout day and night (cathemeral) were present in both conditions and were associated with feeding, coprophagy, and grooming. Finally, while rest occurs throughout day and night in the laboratory setting, tuco-tucos restrict rest episodes to nighttime under field enclosures, possibly as a behavioral adjustment to challenging environments. HMM models provide more behavioral information from accelerometry data, expanding the scope of activity pattern studies in small mammals under natural conditions.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"287-300"},"PeriodicalIF":2.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria F Gonzalez-Aponte, Anna R Damato, Ruth G N Katumba, Grayson R Talcott, Jian L Campian, Omar H Butt, Marc D Ruben, Joshua B Rubin, Erik D Herzog, Olivia J Walch
{"title":"Tracking Daily Variations in Rest-Wake to Guide Personalized Timing of Temozolomide for High-Grade Glioma Patients.","authors":"Maria F Gonzalez-Aponte, Anna R Damato, Ruth G N Katumba, Grayson R Talcott, Jian L Campian, Omar H Butt, Marc D Ruben, Joshua B Rubin, Erik D Herzog, Olivia J Walch","doi":"10.1177/07487304251336826","DOIUrl":"https://doi.org/10.1177/07487304251336826","url":null,"abstract":"<p><p>High-grade gliomas, like glioblastoma multiforme (GBM), are the most common malignant brain tumors in adults and are treated with the chemotherapy drug temozolomide (TMZ). In humans, a retrospective analysis of patients' overall survival suggests that morning dosing may confer a benefit over evening dosing. Circadian variation in O6-methylguanine-DNA methyltransferase (MGMT) gene expression and promoter methylation has been implicated in increased tumor cell sensitivity to TMZ in the morning. Although patient compliance with timed oral administration of TMZ was high in a prospective trial, it is not known whether differences in daily sleep patterns of patients impact the biological time of drug administration or overall survival. Using wrist actigraphy collected from 10 high-grade glioma patients, we quantified the moment of oral TMZ delivery in terms of wall clock time and internal biological time during the months after surgical tumor resection. We found that variation of daily rhythms within and between individuals caused dosing times to vary more in their internal biological time than wall clock time so that, for example, some doses taken by patients assigned for the evening (2000 h) were closer to the patient's internal biological morning. We conclude that wrist actigraphy provides a reliable and non-invasive estimate of personal circadian time that could improve efficacy and precision of TMZ delivery. These findings may inform personalized circadian medicine and optimized times for TMZ delivery in the clinic.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"7487304251336826"},"PeriodicalIF":2.9,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144159255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sex and the Clock: Time to Consider Sexually Dimorphic Rhythms in Circadian Research.","authors":"Ronan Lordan","doi":"10.1177/07487304251333548","DOIUrl":"https://doi.org/10.1177/07487304251333548","url":null,"abstract":"","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"7487304251333548"},"PeriodicalIF":2.9,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144019090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kristen L Knutson, Kathryn J Reid, Mandy Wong, Shaina J Alexandria, S Justin Thomas, Cora E Lewis, Pamela J Schreiner, Stephen Sidney, Kiarri Kershaw, Mercedes R Carnethon
{"title":"Chronotype and Sleep Timing by Race-Gender: The CARDIA Sleep Study.","authors":"Kristen L Knutson, Kathryn J Reid, Mandy Wong, Shaina J Alexandria, S Justin Thomas, Cora E Lewis, Pamela J Schreiner, Stephen Sidney, Kiarri Kershaw, Mercedes R Carnethon","doi":"10.1177/07487304251315596","DOIUrl":"10.1177/07487304251315596","url":null,"abstract":"<p><p>Chronotype indicates a person's \"circadian preference,\" that is, the time of day when they prefer to perform certain activities (e.g. a \"morning\" vs \"evening\" person). Sleep timing is related to chronotype but is also constrained by social requirements. When sleep timing does not align with chronotype, circadian disruption can occur, and circadian disruption impairs cardiometabolic health. There are well-known racial disparities in cardiometabolic health whereby Black adults are at higher risk. It is not well-known, however, whether sleep timing within each chronotype varies between Black and White adults, which was the focus of these analyses. These data are from a cross-sectional sleep study conducted in 2020 to 2023 as an ancillary to the Coronary Artery Risk Development in Young Adults (CARDIA) cohort study, in the United States. The Morningness-Eveningness Questionnaire (MEQ) captured chronotype in 2,373 participants aged 52-70 years. Chronotype was based on both overall MEQ score and question 19 categories. A subset of participants wore a wrist actigraphy monitor for ~7 days to assess sleep timing (<i>n</i> = 720). Our sample included 27% Black women, 17% Black men, 33% White women, and 24% White men. Mean MEQ score and chronotype distribution did not differ among race-gender groups. Among morning types, Black women and men had a later sleep start and midpoint than White women (23-34 minutes later for Black women, 32-53 minutes for Black men). Among intermediate types, Black women had significantly later sleep start (55 minutes later) and midpoint (44 minutes later), and Black men had a later sleep start (50 minutes later) than White women adjusting for age and study site. In summary, regardless of chronotype, Black adults had later sleep timing than White adults.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"171-180"},"PeriodicalIF":2.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}