How to Deal With Darkness: Modeling and Visualization of Zero-Inflated Personal Light Exposure Data on a Logarithmic Scale.

IF 2.1 3区 生物学 Q2 BIOLOGY
Johannes Zauner, Carolina Guidolin, Manuel Spitschan
{"title":"How to Deal With Darkness: Modeling and Visualization of Zero-Inflated Personal Light Exposure Data on a Logarithmic Scale.","authors":"Johannes Zauner, Carolina Guidolin, Manuel Spitschan","doi":"10.1177/07487304251336624","DOIUrl":null,"url":null,"abstract":"<p><p>Measuring and analyzing personal light exposure has become increasingly important in circadian and myopia research. Very small measurement values in light exposure patterns, especially zero, are regularly recorded in field studies. These zero-lux values are problematic for commonly applied logarithmic transformations and should neither be dismissed nor be unduly influential in visualizations and statistical modeling. We compare 4 ways to visualize such data on a linear, logarithmic, hybrid, or symlog scale, and we model the light exposure patterns with a generalized additive model by removing zero-lux values, adding a very small or -1 log<sub>10</sub> lux value to the dataset, or using the Tweedie error distribution. We show that a <i>symlog</i>-transformed visualization, implemented in <i>LightLogR</i>, displays relevant features of light exposure across scales, including zero-lux, while reducing the emphasis on the small values (<1 lux). <i>Symlog</i> is well-suited to visualize differences in light exposure covering heavy-tailed negative values. We further show that small but not negligible value additions to the light exposure data of -1 log<sub>10</sub> lux for statistical modeling allow for acceptable models on a logarithmic scale, while very small values distort results. We also demonstrate the utility of the Tweedie distribution, which does not require prior transformations, models data on a logarithmic scale, and includes zero-lux values, capturing personal light exposure patterns satisfactorily. Data from field studies of personal light exposure require appropriate handling of zero-lux values in a logarithmic context. <i>Symlog</i> scales for visualizations and an appropriate addition to input values for modeling, or the Tweedie distribution, provide a solid basis. Beyond light exposure, other time-series data relevant to biological rhythms, such as accelerometry for ambulatory sleep scoring in humans or wheel-running in animal models, exhibit zero inflation and can benefit from the methods introduced here.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"7487304251336624"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Rhythms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/07487304251336624","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Measuring and analyzing personal light exposure has become increasingly important in circadian and myopia research. Very small measurement values in light exposure patterns, especially zero, are regularly recorded in field studies. These zero-lux values are problematic for commonly applied logarithmic transformations and should neither be dismissed nor be unduly influential in visualizations and statistical modeling. We compare 4 ways to visualize such data on a linear, logarithmic, hybrid, or symlog scale, and we model the light exposure patterns with a generalized additive model by removing zero-lux values, adding a very small or -1 log10 lux value to the dataset, or using the Tweedie error distribution. We show that a symlog-transformed visualization, implemented in LightLogR, displays relevant features of light exposure across scales, including zero-lux, while reducing the emphasis on the small values (<1 lux). Symlog is well-suited to visualize differences in light exposure covering heavy-tailed negative values. We further show that small but not negligible value additions to the light exposure data of -1 log10 lux for statistical modeling allow for acceptable models on a logarithmic scale, while very small values distort results. We also demonstrate the utility of the Tweedie distribution, which does not require prior transformations, models data on a logarithmic scale, and includes zero-lux values, capturing personal light exposure patterns satisfactorily. Data from field studies of personal light exposure require appropriate handling of zero-lux values in a logarithmic context. Symlog scales for visualizations and an appropriate addition to input values for modeling, or the Tweedie distribution, provide a solid basis. Beyond light exposure, other time-series data relevant to biological rhythms, such as accelerometry for ambulatory sleep scoring in humans or wheel-running in animal models, exhibit zero inflation and can benefit from the methods introduced here.

如何处理黑暗:在对数尺度上零膨胀个人光照数据的建模和可视化。
测量和分析个人光照在昼夜节律和近视研究中变得越来越重要。在实地研究中,经常记录光照射模式的非常小的测量值,特别是零。这些零勒克斯值对于通常应用的对数变换来说是有问题的,在可视化和统计建模中既不应忽视也不应过度影响。我们比较了在线性、对数、混合或符号尺度上可视化这些数据的4种方法,并通过去除零勒克斯值、向数据集添加非常小或-1 log10勒克斯值或使用Tweedie误差分布,使用广义加性模型对光照模式进行建模。我们展示了在LightLogR中实现的符号转换可视化,显示了跨尺度的光暴露的相关特征,包括零勒克斯,同时减少了对小值的强调(Symlog非常适合可视化覆盖重尾负值的光暴露差异)。我们进一步表明,用于统计建模的-1 log10勒克斯的光照数据的小但不可忽略的增加值允许在对数尺度上接受模型,而非常小的值会扭曲结果。我们还展示了Tweedie分布的实用性,它不需要事先转换,在对数尺度上对数据进行建模,并包括零勒克斯值,令人满意地捕捉个人光照模式。来自个人光照的实地研究数据需要在对数上下文中对零勒克斯值进行适当处理。用于可视化的符号尺度和用于建模的输入值的适当添加,或Tweedie分布,提供了坚实的基础。除了光照,其他与生物节律相关的时间序列数据,如人类动态睡眠评分的加速度计或动物模型的轮跑,都显示出零膨胀,可以从本文介绍的方法中受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
8.60%
发文量
48
审稿时长
>12 weeks
期刊介绍: Journal of Biological Rhythms is the official journal of the Society for Research on Biological Rhythms and offers peer-reviewed original research in all aspects of biological rhythms, using genetic, biochemical, physiological, behavioral, epidemiological & modeling approaches, as well as clinical trials. Emphasis is on circadian and seasonal rhythms, but timely reviews and research on other periodicities are also considered. The journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信