Automated Batch Processing of Diurnal Cardiac Activity: Comparison of Fully Automated Batch- to Gold-Standard Manual Processing.

IF 2.1 3区 生物学 Q2 BIOLOGY
Journal of Biological Rhythms Pub Date : 2025-10-01 Epub Date: 2025-07-11 DOI:10.1177/07487304251348516
Maximilian Schmausser, Christoph Hoog Antink, Michael Kaess, Julian Koenig
{"title":"Automated Batch Processing of Diurnal Cardiac Activity: Comparison of Fully Automated Batch- to Gold-Standard Manual Processing.","authors":"Maximilian Schmausser, Christoph Hoog Antink, Michael Kaess, Julian Koenig","doi":"10.1177/07487304251348516","DOIUrl":null,"url":null,"abstract":"<p><p>The analysis of long-term variation patterns in heart rate (HR) and heart rate variability (HRV) provides insights into autonomic nervous system function beyond short-term recordings taken under resting or experimental conditions. Yet, traditional processing pipelines often require time- and labor-intensive visual inspection of electrocardiography (ECG) data and manual artifact removal. This study evaluated the performance of 3 code-based fully automated batch-processing pipelines-<i>NeuroKit2</i>, <i>RHRV</i>, and <i>Systole</i>-against the manual gold standard utilizing Kubios for both (diurnal) HR and HRV estimates derived from raw 48-h ECG recordings. Results illustrate that while automated pipelines yield HR estimates in good agreement to the gold standard (<i>r</i> = 0.91-0.99; α = 0.90-0.99), HRV estimates exhibit greater deviations (<i>r</i> = 0.66-0.87; α = 0.76-0.90). Cosinor analyses of diurnal HR patterns indicate strong consistency between Kubios and NeuroKit2 (<i>r</i> = 0.94-0.99; α = 0.97-0.99), but weaker correlations with RHRV and Systole (<i>r</i> = 0.58-0.87; α = 0.63-0.93). HRV cosinor parameters showed even larger discrepancies, with parameter-dependent correlations ranging from <i>r</i> = 0.41 to 0.86 and Cronbach's alphas from α = 0.59 to 0.91. Findings suggest that automated batch processing of ECG data for analyzing diurnal variation patterns in HR and HRV produces results that show moderate to good agreement with the gold standard including visual inspection and manual processing. However, caution is warranted, as existing toolboxes and pipelines may lead to different results.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"468-479"},"PeriodicalIF":2.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Rhythms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/07487304251348516","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The analysis of long-term variation patterns in heart rate (HR) and heart rate variability (HRV) provides insights into autonomic nervous system function beyond short-term recordings taken under resting or experimental conditions. Yet, traditional processing pipelines often require time- and labor-intensive visual inspection of electrocardiography (ECG) data and manual artifact removal. This study evaluated the performance of 3 code-based fully automated batch-processing pipelines-NeuroKit2, RHRV, and Systole-against the manual gold standard utilizing Kubios for both (diurnal) HR and HRV estimates derived from raw 48-h ECG recordings. Results illustrate that while automated pipelines yield HR estimates in good agreement to the gold standard (r = 0.91-0.99; α = 0.90-0.99), HRV estimates exhibit greater deviations (r = 0.66-0.87; α = 0.76-0.90). Cosinor analyses of diurnal HR patterns indicate strong consistency between Kubios and NeuroKit2 (r = 0.94-0.99; α = 0.97-0.99), but weaker correlations with RHRV and Systole (r = 0.58-0.87; α = 0.63-0.93). HRV cosinor parameters showed even larger discrepancies, with parameter-dependent correlations ranging from r = 0.41 to 0.86 and Cronbach's alphas from α = 0.59 to 0.91. Findings suggest that automated batch processing of ECG data for analyzing diurnal variation patterns in HR and HRV produces results that show moderate to good agreement with the gold standard including visual inspection and manual processing. However, caution is warranted, as existing toolboxes and pipelines may lead to different results.

每日心脏活动的自动批处理:全自动批处理与金标准手工处理的比较。
心率(HR)和心率变异性(HRV)的长期变化模式分析提供了对自主神经系统功能的深入了解,而不是在休息或实验条件下进行短期记录。然而,传统的处理管道通常需要对心电图(ECG)数据进行费时费力的目视检查和人工去除伪影。本研究评估了3个基于代码的全自动批处理管道(neurokit2、RHRV和systole)的性能,并利用Kubios对原始48小时ECG记录得出的(日)HR和HRV估计进行了对比。结果表明,虽然自动化管道产生的HR估计与金标准非常一致(r = 0.91-0.99;α = 0.90-0.99), HRV估计值有较大偏差(r = 0.66-0.87;α = 0.76-0.90)。余弦分析表明,Kubios和NeuroKit2的日HR模式具有很强的一致性(r = 0.94-0.99;α = 0.97-0.99),但与RHRV和收缩期相关性较弱(r = 0.58-0.87;α = 0.63-0.93)。HRV余弦参数显示出更大的差异,参数相关范围为r = 0.41至0.86,Cronbach's alpha为α = 0.59至0.91。研究结果表明,用于分析HR和HRV的日变化模式的心电数据的自动化批量处理产生的结果与金标准(包括目视检查和人工处理)显示中度至良好的一致性。但是,需要谨慎,因为现有的工具箱和管道可能导致不同的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
8.60%
发文量
48
审稿时长
>12 weeks
期刊介绍: Journal of Biological Rhythms is the official journal of the Society for Research on Biological Rhythms and offers peer-reviewed original research in all aspects of biological rhythms, using genetic, biochemical, physiological, behavioral, epidemiological & modeling approaches, as well as clinical trials. Emphasis is on circadian and seasonal rhythms, but timely reviews and research on other periodicities are also considered. The journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信