F. Marchal, N. Merbahi, G. Wattieaux, A. Piquemal, M. Yousfi
{"title":"Measurements of Absolute Atomic Nitrogen Density by Two-Photon Absorption Laser-Induced Fluorescence Spectroscopy in Hot Air Plasma Generated by Microwave Resonant Cavity","authors":"F. Marchal, N. Merbahi, G. Wattieaux, A. Piquemal, M. Yousfi","doi":"10.4236/JASMI.2017.74008","DOIUrl":"https://doi.org/10.4236/JASMI.2017.74008","url":null,"abstract":"For the first time, absolute densities of atomic nitrogen in its ground state (N4S) have been measured in hot dry and humid air plasma columns under post-discharge regime. The determination of space-resolved absolute densities leads to obtain the dissociation degrees of molecular nitrogen in the plasma. The hot plasmas are generated inside an upstream gas-conditioning cell at 600 mbar when the air gas flow is directly injected at 10 slm in a microwave resonant cavity (2.45 GHz, 1 kW) placed in the downstream side. Density measurements based on laser induced fluorescence spectroscopy with two-photon excitation (TALIF), are more particularly performed along the radial and axial positions of the plasma column. Calibration of TALIF signals is performed in situ (i.e. in the same gas-conditioning cell but without plasma) using an air gas mixture containing krypton. Optical emission spectroscopy is considered to estimate the rotational gas temperature by adding a small amount of H2 in dry air to better detect OH (A-X) spectra. The rotational temperatures in humid air plasma column (50% of humidity) are larger than those of dry air plasma column by practically 30% near the nozzle of resonant cavity on the axis of the plasma column. This is partly due to attachment heating processes initiated by water vapor. A maximum of the measured absolute nitrogen density is also observed near the nozzle which is also larger for humid air plasma column. The obtained dissociation degrees of molecular nitrogen in both dry and humid air plasma along the air plasma column are lower than the cases where only thermodynamic equilibrium is assumed. This is characteristic of the absence of chemical and energetic equilibria not yet reached in the air plasma column dominated by recombination processes.","PeriodicalId":14932,"journal":{"name":"Journal of Analytical Sciences, Methods and Instrumentation","volume":"34 1","pages":"93-115"},"PeriodicalIF":0.0,"publicationDate":"2017-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85363418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brigitte Dustou, L. Latapie, F. Chauvet, Jean-Michel Bergerat, T. Tzedakis
{"title":"Analytical Method to Monitor Industrial Pickling Baths Initially Constituted by HF, HNO3","authors":"Brigitte Dustou, L. Latapie, F. Chauvet, Jean-Michel Bergerat, T. Tzedakis","doi":"10.4236/JASMI.2017.74009","DOIUrl":"https://doi.org/10.4236/JASMI.2017.74009","url":null,"abstract":"The present study couples the acid/basis titration and the ICP analysis in order to monitor the concentrations of nitric and hydrofluoric acids, and presents into baths used to pickle alloys of titanium or stainless steel, largely employed in the aeronautic industry. The pickling of the alloys releases various metallic cations able to react with HF in order to lead to metal-fluoride complexes and free H+, the last being able to react with the basis. In this study, it was determined: the most significant correlations providing the number of the protons released by the complexation of the metallic cation by the fluoride. The proposed method based on: 1) these correlations; 2) the titration pH = f(VKOH) curves; and 3) the content of metallic cations determined by ICP, enables the monitoring of the content of HNO3 and HF into the pickling bath. Assuming that one bath was used for one type of alloy (alloys of Titanium for example, or alloys of stainless steel), then the proposed method appears providing reliable concentration values of both acids as well as metallic cations.","PeriodicalId":14932,"journal":{"name":"Journal of Analytical Sciences, Methods and Instrumentation","volume":"70 1","pages":"116-135"},"PeriodicalIF":0.0,"publicationDate":"2017-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91366935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Laser Interferometer Based Measurement for Positioning Error Compensation in Cartesian Multi-Axis Systems","authors":"Y. Echerfaoui, A. E. Ouafi, A. Chebak","doi":"10.4236/JASMI.2017.73007","DOIUrl":"https://doi.org/10.4236/JASMI.2017.73007","url":null,"abstract":"Accuracy is one of the most important key indices to evaluate multi-axis systems’ (MAS’s) characteristics and performances. The accuracy of MAS’s such as machine tools, measuring machines and robots is adversely affected by various error sources, including geometric imperfections, thermal deformations, load effects, and dynamic disturbances. The increasing demand for higher dimensional accuracy in various industrial applications has created the need to develop cost-effective methods for enhancing the overall performance of these mechanisms. Improving the accuracy of a MAS by upgrading the physical structure would lead to an exponential increase in manufacturing costs without totally eliminating geometrical deviations and thermal deformations of MAS components. Hence, the idea of reducing MAS’s error by a software-based alternative approach to provide real-time prediction and correction of geometric and thermally induced errors is considered a strategic step toward achieving the full potential of the MAS. This paper presents a structured approach designed to improve the accuracy of Cartesian MAS’s through software error compensation. Four steps are required to develop and implement this approach: (i) measurement of error components using a multidimensional laser interferometer system, (ii) tridimensional volumetric error mapping using rigid body kinematics, (iii) volumetric error prediction via an artificial neural network model, and finally (iv) implementation of the on-line error compensation. An illustrative example using a bridge type coordinate measuring machine is presented.","PeriodicalId":14932,"journal":{"name":"Journal of Analytical Sciences, Methods and Instrumentation","volume":"1 1","pages":"75-92"},"PeriodicalIF":0.0,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76713050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electric and Spectroscopic Studies of Pulsed Corona Discharges in Nitrogen at Atmospheric Pressure","authors":"A. Abahazem, N. Merbahi, Hasna Guedah, M. Yousfi","doi":"10.4236/JASMI.2017.73006","DOIUrl":"https://doi.org/10.4236/JASMI.2017.73006","url":null,"abstract":"This paper is mainly dedicated to the experimental electric and spectroscopic analysis of positive corona discharges in the case of point to plane configuration, generated in nitrogen at atmospheric pressure. The maximum corona current (a few hundreds of mA), the average current (a few μA) and the average propagation velocity (a few 107 cm/s) are analyzed with the variation of the applied voltage (a few kV) and the gap distance (not exceeding 16 mm). By using an ICCD camera, the dynamics of the discharge during the propagation of primary and secondary streamers across the gap distance was analyzed. Spectroscopic study is emphasized in a spectral range from 200 nm up to 500 nm, to determine the important excited species present in the gaseous environment such as the second positive and the first negative systems (SPS and FNS respectively). The identification of the quenching NOγ emission bands is also emphasized.","PeriodicalId":14932,"journal":{"name":"Journal of Analytical Sciences, Methods and Instrumentation","volume":"28 1","pages":"57-74"},"PeriodicalIF":0.0,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84333041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liangliang Zhang, Hongxia Wang, Yongmei Wang, Man Xu, HU Xinyu
{"title":"Diurnal Effects on Chinese Wild Ledum palustre L. Essential Oil Yields and Composition","authors":"Liangliang Zhang, Hongxia Wang, Yongmei Wang, Man Xu, HU Xinyu","doi":"10.4236/JASMI.2017.72005","DOIUrl":"https://doi.org/10.4236/JASMI.2017.72005","url":null,"abstract":"This study was conducted to evaluate the diurnal effect on essential oil yield and composition of Ledum palustre L. grown in northern Inner Mongolia, China. Essential oil content and composition were determined and compared as a function of different harvesting times viz. 7:00 AM, 11:00 AM, 3:00 PM, 7:00 PM, and 11:00 PM within a day. The essential oil obtained by hydrodistillation was investigated by gas chromatography-mass spectrometry (GC-MS). The yield of essential oil was varied from 1.21% to 1.62%; the maximum oil yield was obtained at 3:00 PM and the minimum at 7:00 PM. Similar to oil yield, qualitative difference in essential oil composition of L. palustre was observed. For the best essential oil yields, L. palustre should be harvested during 11:00 AM to 3:00 PM.","PeriodicalId":14932,"journal":{"name":"Journal of Analytical Sciences, Methods and Instrumentation","volume":"42 1","pages":"47-55"},"PeriodicalIF":0.0,"publicationDate":"2017-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78935941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microfluidic Analytical System with On-Line Luminol Chemiluminescence Detection Based on Annular Flow of Phase Separation Multiphase Flow","authors":"Junki Manai, Keiichi Nishiyama, K. Tsukagoshi","doi":"10.4236/JASMI.2017.72003","DOIUrl":"https://doi.org/10.4236/JASMI.2017.72003","url":null,"abstract":"Microfluidic analytical system was developed based on annular flow of phase separation multiphase flow with a ternary water-hydrophilic/hydrophobic organic solvent solution. The analytical system was combined with on-line luminol chemiluminescence detection for catechin analysis. The water (10 mM phosphate buffer, pH 7.3)-acetonitrile-ethyl acetate mixed solution (3:8:4, volume ratio) containing 60 μM luminol and 2 mM hydrogen peroxide as a carrier was fed into the capillary tube (open-tubular fused-silica, 75 μm inner diameter, 110 cm effective length) at a flow rate of 1.0 μL·min-1. The carrier solution showed stable chemiluminescence as a baseline on the flow chart. Eight catechins were detected as negative peaks for their antioxidant potential with different detection times. The system was applied to analyze the amounts of catechin in commercially available green tea beverages.","PeriodicalId":14932,"journal":{"name":"Journal of Analytical Sciences, Methods and Instrumentation","volume":"30 1","pages":"29-39"},"PeriodicalIF":0.0,"publicationDate":"2017-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85637442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Denaturation of DNA in Ternary Mixed Solution of Water/Hydrophilic/Hydrophobic Organic Solvent","authors":"Yuki Ito, K. Tsukagoshi, Akira Kobayashi","doi":"10.4236/JASMI.2017.72004","DOIUrl":"https://doi.org/10.4236/JASMI.2017.72004","url":null,"abstract":"Denaturation was examined for the first time in a ternary mixed solution of water/hydrophilic/ hydrophobic organic solvent using λ-DNA and a plasmid as models. The absorbance of λ-DNA and the plasmid at 260 nm gradually increased for several days up to 1.68 and 1.38 times the initial values, respectively, in a water/acetonitrile/ethyl acetate (15:3:2, volume ratio) mixed solution, whereas there was little change in a water/acetonitrile (15:3, volume ratio) mixed solution. The plasmid treated with the ternary mixed solution was also examined with agarose gel electrophoresis. These experimental data indicated that λ-DNA changed from a double helix structure to a single helix structure and that the plasmid partially transformed to generate a denaturation bubble in the structure. The new idea of using the ternary mixed solution first enabled the interaction of the hydrophobic organic solvent (e.g., ethyl acetate) molecule with the double helical structure of DNA, leading to specific slow-proceeding denaturation.","PeriodicalId":14932,"journal":{"name":"Journal of Analytical Sciences, Methods and Instrumentation","volume":"54 1","pages":"40-46"},"PeriodicalIF":0.0,"publicationDate":"2017-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90827426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simple HPLC–UV Analysis of Phenol and Its Related Compounds in Tap Water after Pre-Column Derivatization with 4-Nitrobenzoyl Chloride","authors":"Y. Higashi","doi":"10.4236/JASMI.2017.71002","DOIUrl":"https://doi.org/10.4236/JASMI.2017.71002","url":null,"abstract":"The purpose of this study is to develop an HPLC-UV (280 nm) method for simultaneous determination of phenol, five chlorophenols (2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol, and 2,4,6-trichlorophenol), and three phenylphenols (2-phenylphenol, 3-phenylphenol, and 4-phenylphenol) in tap water after pre-column derivatization with 4-nitrobenzoyl chloride. Standard curves were obtained after derivatization with 4-nitrobenzoyl chloride in borate buffer (pH 8.5) at 50°C for 1 min. The nine 4-nitrobenzoyl derivatives were well separated in less than 15 min on a Cholester column. Calibration plots were linear in the range of 0.02 ~ 0.12 to 0.9 mg/L, with r2 values ≥0.9928, for all compounds. The lower limits of detection were 0.006 to 0.05 mg/L. The coefficients of variation were less than 12.0%. The recovery values from tap water spiked with a standard mixture of test compounds were satisfactory. While the levels of phenol, five chlorophenols, and three phenylphenols in tap water were below the lower limit of determination, our method is expected to be useful for monitoring and/or identifying environmental water samples that are contaminated with these compounds, i.e., for assessing compliance with the official guidelines of the World Health Organization.","PeriodicalId":14932,"journal":{"name":"Journal of Analytical Sciences, Methods and Instrumentation","volume":"109 1","pages":"18-28"},"PeriodicalIF":0.0,"publicationDate":"2017-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83623774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fitting Nonlinear Calibration Curves: No Models Perfect","authors":"Julia Martín, A. Gracia, A. Asuero","doi":"10.4236/JASMI.2017.71001","DOIUrl":"https://doi.org/10.4236/JASMI.2017.71001","url":null,"abstract":"The study of the calibration of a series of compounds of environmental concern (six perfluoroalkyl compounds (perfluorooctane sulfonic acid and five perfluoroalkyl carboxylic acids), three preservatives (methyl-, ethyl- and propylparabens) and the brominated flame retardant hexabromocyclododecane) by LC-MS/MS has been carries out, with a view to their simultaneous determination in samples of environmental interest. In some cases nonlinear calibration curves are obtained, but restricting the concentration range a linear model may be used to fit the data. Residual analysis has been performed in order to verify which models fit the data better, opting for a compromise decision given the apparent complexity of residuals plots. As Box states there are no perfect models (but models that work better than others).","PeriodicalId":14932,"journal":{"name":"Journal of Analytical Sciences, Methods and Instrumentation","volume":"19 1","pages":"1-17"},"PeriodicalIF":0.0,"publicationDate":"2017-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89861183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Critical Assessment of the Current WADA Approach for the Detection of 4-Chlorodehydromethyltestosteron","authors":"A. Kopylov","doi":"10.4236/JASMI.2016.64008","DOIUrl":"https://doi.org/10.4236/JASMI.2016.64008","url":null,"abstract":"This paper is focused on application of method for detection of novel metabolites of 4-chlorodehydromethyltestosterone (known as oral turinabol, OT), which were postulated as long-term metabolites. The method started to be applied without rigorous validation, verification and excretion assay assisted as evidences for existence of the declared detectable compounds as true metabolites derived after OT biotransformation. This method has been started to use almost in its original form which arose in 2012 year for the very first time and never been revised and re-confirmed in peer-reviewed journals. Usually WADA encourages accredited laboratories to publish their results of methods development, validation and specific excretion studies in peer-reviewed journals. However, an incorrect method with neglected validation design and implicit data contradictions is currently widely applied. The author of this presented paper was athletes’ representative on repeated occasion and has been provided with several full documentation packages of OT novel metabolites analysis. Thus, the author makes its own conclusion based on its own evidences of that currently employed method and data analysis is exactly the same declared in a wrong way as emerged from the original paper.","PeriodicalId":14932,"journal":{"name":"Journal of Analytical Sciences, Methods and Instrumentation","volume":"22 1","pages":"65-82"},"PeriodicalIF":0.0,"publicationDate":"2016-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78492456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}