{"title":"基于环流相分离多相流鲁米诺化学发光在线检测的微流控分析系统","authors":"Junki Manai, Keiichi Nishiyama, K. Tsukagoshi","doi":"10.4236/JASMI.2017.72003","DOIUrl":null,"url":null,"abstract":"Microfluidic analytical system was developed based on annular flow of phase separation multiphase flow with a ternary water-hydrophilic/hydrophobic organic solvent solution. The analytical system was combined with on-line luminol chemiluminescence detection for catechin analysis. The water (10 mM phosphate buffer, pH 7.3)-acetonitrile-ethyl acetate mixed solution (3:8:4, volume ratio) containing 60 μM luminol and 2 mM hydrogen peroxide as a carrier was fed into the capillary tube (open-tubular fused-silica, 75 μm inner diameter, 110 cm effective length) at a flow rate of 1.0 μL·min-1. The carrier solution showed stable chemiluminescence as a baseline on the flow chart. Eight catechins were detected as negative peaks for their antioxidant potential with different detection times. The system was applied to analyze the amounts of catechin in commercially available green tea beverages.","PeriodicalId":14932,"journal":{"name":"Journal of Analytical Sciences, Methods and Instrumentation","volume":"30 1","pages":"29-39"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Microfluidic Analytical System with On-Line Luminol Chemiluminescence Detection Based on Annular Flow of Phase Separation Multiphase Flow\",\"authors\":\"Junki Manai, Keiichi Nishiyama, K. Tsukagoshi\",\"doi\":\"10.4236/JASMI.2017.72003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microfluidic analytical system was developed based on annular flow of phase separation multiphase flow with a ternary water-hydrophilic/hydrophobic organic solvent solution. The analytical system was combined with on-line luminol chemiluminescence detection for catechin analysis. The water (10 mM phosphate buffer, pH 7.3)-acetonitrile-ethyl acetate mixed solution (3:8:4, volume ratio) containing 60 μM luminol and 2 mM hydrogen peroxide as a carrier was fed into the capillary tube (open-tubular fused-silica, 75 μm inner diameter, 110 cm effective length) at a flow rate of 1.0 μL·min-1. The carrier solution showed stable chemiluminescence as a baseline on the flow chart. Eight catechins were detected as negative peaks for their antioxidant potential with different detection times. The system was applied to analyze the amounts of catechin in commercially available green tea beverages.\",\"PeriodicalId\":14932,\"journal\":{\"name\":\"Journal of Analytical Sciences, Methods and Instrumentation\",\"volume\":\"30 1\",\"pages\":\"29-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Sciences, Methods and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/JASMI.2017.72003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Sciences, Methods and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/JASMI.2017.72003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microfluidic Analytical System with On-Line Luminol Chemiluminescence Detection Based on Annular Flow of Phase Separation Multiphase Flow
Microfluidic analytical system was developed based on annular flow of phase separation multiphase flow with a ternary water-hydrophilic/hydrophobic organic solvent solution. The analytical system was combined with on-line luminol chemiluminescence detection for catechin analysis. The water (10 mM phosphate buffer, pH 7.3)-acetonitrile-ethyl acetate mixed solution (3:8:4, volume ratio) containing 60 μM luminol and 2 mM hydrogen peroxide as a carrier was fed into the capillary tube (open-tubular fused-silica, 75 μm inner diameter, 110 cm effective length) at a flow rate of 1.0 μL·min-1. The carrier solution showed stable chemiluminescence as a baseline on the flow chart. Eight catechins were detected as negative peaks for their antioxidant potential with different detection times. The system was applied to analyze the amounts of catechin in commercially available green tea beverages.