JCI insightPub Date : 2024-10-22DOI: 10.1172/jci.insight.179017
Kevin D Mangum, Aaron denDekker, Qinmengge Li, Lam C Tsoi, Amrita D Joshi, William J Melvin, Sonya J Wolf, Jadie Y Moon, Christopher O Audu, James Shadiow, Andrea T Obi, Rachael Wasikowski, Emily C Barrett, Tyler M Bauer, Kylie Boyer, Zara Ahmed, Frank M Davis, Johann Gudjonsson, Katherine A Gallagher
{"title":"The STAT3/SETDB2 axis dictates NF-κB-mediated inflammation in macrophages during wound repair.","authors":"Kevin D Mangum, Aaron denDekker, Qinmengge Li, Lam C Tsoi, Amrita D Joshi, William J Melvin, Sonya J Wolf, Jadie Y Moon, Christopher O Audu, James Shadiow, Andrea T Obi, Rachael Wasikowski, Emily C Barrett, Tyler M Bauer, Kylie Boyer, Zara Ahmed, Frank M Davis, Johann Gudjonsson, Katherine A Gallagher","doi":"10.1172/jci.insight.179017","DOIUrl":"10.1172/jci.insight.179017","url":null,"abstract":"<p><p>Macrophage transition from an inflammatory to reparative phenotype after tissue injury is controlled by epigenetic enzymes that regulate inflammatory gene expression. We have previously identified that the histone methyltransferase SETDB2 in macrophages drives tissue repair by repressing NF-κB-mediated inflammation. Complementary ATAC-Seq and RNA-Seq of wound macrophages isolated from mice deficient in SETDB2 in myeloid cells revealed that SETDB2 suppresses the inflammatory gene program by inhibiting chromatin accessibility at NF-κB-dependent gene promoters. We found that STAT3 was required for SETDB2 expression in macrophages, yet paradoxically, it also functioned as a binding partner of SETDB2 where it repressed SETDB2 activity by inhibiting its interaction with the NF-κB component, RELA, leading to increased RELA/NF-κB-mediated inflammatory gene expression. Furthermore, RNA-Seq in wound macrophages from STAT3-deficient mice corroborated this and revealed STAT3 and SETDB2 transcriptionally coregulate overlapping genes. Finally, in diabetic wound macrophages, STAT3 expression and STAT3/SETDB2 binding were increased. We have identified what we believe to be a novel STAT3/SETDB2 axis that modulates macrophage phenotype during tissue repair and may be an important therapeutic target for nonhealing diabetic wounds.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"9 20","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530128/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142465886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCI insightPub Date : 2024-10-22DOI: 10.1172/jci.insight.183516
Talita Z Choudhury, Sarah C Greskovich, Holly B Girard, Anupama S Rao, Yogesh Budhathoki, Emily M Cameron, Sara Conroy, Deqiang Li, Ming-Tao Zhao, Vidu Garg
{"title":"Impact of genetic factors on antioxidant rescue of maternal diabetes-associated congenital heart disease.","authors":"Talita Z Choudhury, Sarah C Greskovich, Holly B Girard, Anupama S Rao, Yogesh Budhathoki, Emily M Cameron, Sara Conroy, Deqiang Li, Ming-Tao Zhao, Vidu Garg","doi":"10.1172/jci.insight.183516","DOIUrl":"https://doi.org/10.1172/jci.insight.183516","url":null,"abstract":"<p><p>Congenital heart disease (CHD) affects ~1% of live births. Although genetic and environmental etiologic contributors have been identified, the majority of CHD lacks a definitive cause, suggesting the role of gene-environment interactions (GxE) in disease pathogenesis. Maternal diabetes mellitus (matDM) is among the most prevalent environmental risk factors for CHD. However, there is a substantial knowledge gap in understanding how matDM acts upon susceptible genetic backgrounds to increase disease expressivity. Previously, we reported a GxE between Notch1 haploinsufficiency and matDM leading to increased CHD penetrance. Here, we demonstrate a cell lineage specific effect of Notch1 haploinsufficiency in matDM-exposed embryos, implicating endothelial/endocardial derived tissues in the developing heart. We report impaired atrioventricular cushion morphogenesis in matDM exposed Notch1+/- animals and show a synergistic effect of NOTCH1 haploinsufficiency and oxidative stress in dysregulation of gene regulatory networks critical for endocardial cushion morphogenesis in vitro. Mitigation of matDM-associated oxidative stress via SOD1 overexpression did not rescue CHD in Notch1 haploinsufficient mice compared to wildtype littermates. Our results show the combinatorial interaction of matDM-associated oxidative stress and a genetic predisposition, Notch1 haploinsufficiency, on cardiac development, supporting a GxE model for CHD etiology and suggesting that antioxidant strategies maybe ineffective in genetically-susceptible individuals.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142500737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCI insightPub Date : 2024-10-22DOI: 10.1172/jci.insight.178373
Katsuhito Ihara, Eiichiro Satake, Parker C Wilson, Bozena Krolewski, Hiroki Kobayashi, Zaipul I Md Dom, Joseph Ricca, Jonathan Wilson, Jonathan M Dreyfuss, Monika A Niewczas, Alessandro Doria, Robert G Nelson, Marcus G Pezzolesi, Benjamin D Humphreys, Kevin Duffin, Andrzej S Krolewski
{"title":"Circulating proteins linked to apoptosis processes and fast development of end-stage kidney disease in diabetes.","authors":"Katsuhito Ihara, Eiichiro Satake, Parker C Wilson, Bozena Krolewski, Hiroki Kobayashi, Zaipul I Md Dom, Joseph Ricca, Jonathan Wilson, Jonathan M Dreyfuss, Monika A Niewczas, Alessandro Doria, Robert G Nelson, Marcus G Pezzolesi, Benjamin D Humphreys, Kevin Duffin, Andrzej S Krolewski","doi":"10.1172/jci.insight.178373","DOIUrl":"10.1172/jci.insight.178373","url":null,"abstract":"<p><p>Many circulating proteins are associated with risk of ESKD, but their source and the biological pathways/disease processes they represent are unclear. Using OLINK proteomics platform, concentrations of 455 proteins were measured in plasma specimens obtained at baseline from 399 individuals with diabetes. Elevated concentrations of 46 circulating proteins were associated (P < 1 × 10-5) with development of ESKD (n = 143) during 7-15 years of follow-up. Twenty of these proteins enriched apoptosis/TNF receptor signaling pathways. A subset of 20 proteins (5-7 proteins), summarized as an apoptosis score, together with clinical variables accurately predicted risk of ESKD. Expression of genes encoding the 46 proteins in peripheral WBCs showed no difference between cells from individuals who did or did not develop ESKD. In contrast, plasma concentration of many of the 46 proteins differed by this outcome. In single-nucleus RNA-Seq analysis of kidney biopsies, the majority of genes encoding for the 20 apoptosis/TNF receptor proteins were overexpressed in injured versus healthy proximal tubule cells. Expression of these 20 genes also correlated with the overall index of apoptosis in these cells. Elevated levels of circulating proteins flagging apoptotic processes/TNF receptor signaling pathways - and likely originating from kidney cells, including injured/apoptotic proximal tubular cells - preceded the development of ESKD.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"9 20","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529980/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142465878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCI insightPub Date : 2024-10-22DOI: 10.1172/jci.insight.176527
Shuai Dong, Cong Fu, Chang Shu, Min Xie, Yan Li, Jun Zou, Yi-Zi Meng, Peng Xu, Yan-Hong Shan, Hui-Min Tian, Jin He, Yong-Guang Yang, Zheng Hu
{"title":"Development of a humanized mouse model with functional human materno-fetal interface immunity.","authors":"Shuai Dong, Cong Fu, Chang Shu, Min Xie, Yan Li, Jun Zou, Yi-Zi Meng, Peng Xu, Yan-Hong Shan, Hui-Min Tian, Jin He, Yong-Guang Yang, Zheng Hu","doi":"10.1172/jci.insight.176527","DOIUrl":"10.1172/jci.insight.176527","url":null,"abstract":"<p><p>Materno-fetal immunity possesses specialized characteristics to ensure pathogen clearance while maintaining tolerance to the semiallogeneic fetus. Most of our understanding on human materno-fetal immunity is based on conventional rodent models that may not precisely represent human immunological processes owing to the huge evolutionary divergence. Herein, we developed a pregnant human immune system (HIS) mouse model through busulfan preconditioning, which hosts multilineage human immune subset reconstitution at the materno-fetal interface. Human materno-fetal immunity exhibits a tolerogenic feature at the midgestation stage (embryonic day [E] 14.5), and human immune regulatory subsets were detected in the decidua. However, the immune system switches to an inflammatory profile at the late gestation stage (E19). A cell-cell interaction network contributing to the alternations in the human materno-fetal immune atmosphere was revealed based on single-cell RNA-Seq analysis, wherein human macrophages played crucial roles by secreting several immune regulatory mediators. Furthermore, depletion of Treg cells at E2.5 and E5.5 resulted in severe inflammation and fetus rejection. Collectively, these results demonstrate that the pregnant HIS mouse model permits the development of functional human materno-fetal immunity and offers a tool for human materno-fetal immunity investigation to facilitate drug discovery for reproductive disorders.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"9 20","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529984/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142465879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immune exhaustion in ME/CFS and long COVID.","authors":"Natalie Eaton-Fitch, Penny Rudd, Teagan Er, Livia Hool, Lara Herrero, Sonya Marshall-Gradisnik","doi":"10.1172/jci.insight.183810","DOIUrl":"10.1172/jci.insight.183810","url":null,"abstract":"<p><p>Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and long COVID are debilitating multisystemic conditions sharing similarities in immune dysregulation and cellular signaling pathways contributing to the pathophysiology. In this study, immune exhaustion gene expression was investigated in participants with ME/CFS or long COVID concurrently. RNA was extracted from peripheral blood mononuclear cells isolated from participants with ME/CFS (n = 14), participants with long COVID (n = 15), and healthy controls (n = 18). Participants with ME/CFS were included according to Canadian Consensus Criteria. Participants with long COVID were eligible according to the case definition for \"Post COVID-19 Condition\" published by the World Health Organization. RNA was analyzed using the NanoString nCounter Immune Exhaustion gene expression panel. Differential gene expression analysis in ME/CFS revealed downregulated IFN signaling and immunoglobulin genes, and this suggested a state of immune suppression. Pathway analysis implicated dysregulated macrophage activation, cytokine production, and immunodeficiency signaling. Long COVID samples exhibited dysregulated expression of genes regarding antigen presentation, cytokine signaling, and immune activation. Differentially expressed genes were associated with antigen presentation, B cell development, macrophage activation, and cytokine signaling. This investigation elucidates the intricate role of both adaptive and innate immune dysregulation underlying ME/CFS and long COVID, emphasizing the potential importance of immune exhaustion in disease progression.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"9 20","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142465882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCI insightPub Date : 2024-10-22DOI: 10.1172/jci.insight.183158
Hannah E Bergom, Ella Boytim, Sean McSweeney, Negar Sadeghipour, Andrew Elliott, Rachel Passow, Eamon Toye, Xiuxiu Li, Pornlada Likasitwatanakul, Daniel M Geynisman, Scott M Dehm, Susan Halabi, Nima Sharifi, Emmanuel S Antonarakis, Charles J Ryan, Justin Hwang
{"title":"Androgen production, uptake, and conversion (APUC) genes define prostate cancer patients with distinct clinical outcomes.","authors":"Hannah E Bergom, Ella Boytim, Sean McSweeney, Negar Sadeghipour, Andrew Elliott, Rachel Passow, Eamon Toye, Xiuxiu Li, Pornlada Likasitwatanakul, Daniel M Geynisman, Scott M Dehm, Susan Halabi, Nima Sharifi, Emmanuel S Antonarakis, Charles J Ryan, Justin Hwang","doi":"10.1172/jci.insight.183158","DOIUrl":"10.1172/jci.insight.183158","url":null,"abstract":"<p><p>BACKGROUNDProstate cancer (PC) is driven by aberrant signaling of the androgen receptor (AR) or its ligands, and androgen deprivation therapies (ADTs) are a cornerstone of treatment. ADT responsiveness may be associated with germline changes in genes that regulate androgen production, uptake, and conversion (APUC).METHODSWe analyzed whole-exome sequencing (WES) and whole-transcriptome sequencing (WTS) data from prostate tissues (SU2C/PCF, TCGA, GETx). We also interrogated the Caris Precision Oncology Alliance (POA) DNA (592-gene/whole exome) and RNA (whole transcriptome) next-generation sequencing databases. Algorithm for Linking Activity Networks (ALAN) was used to quantify all pairwise gene-to-gene associations. Real-world overall survival was determined from insurance claims data using Kaplan-Meier estimates.RESULTSSix APUC genes (HSD3B1, HSD3B2, CYP3A43, CYP11A1, CYP11B1, CYP17A1) exhibited coalescent gene behavior in a cohort of metastatic tumors (n = 208). In the Caris POA dataset, the 6 APUC genes (APUC-6) exhibited robust clustering in primary prostate (n = 4,490) and metastatic (n = 2,593) biopsies. Surprisingly, tumors with elevated APUC-6 expression had statically lower expression of AR, AR-V7, and AR signaling scores, suggesting ligand-driven disease biology. APUC-6 genes instead associated with the expression of alternative steroid hormone receptors, ESR1/2 and PGR. We used RNA expression of AR or APUC-6 genes to define 2 subgroups of tumors with differential association with hallmark pathways and cell surface targets.CONCLUSIONSThe APUC-6-high/AR-low tumors represented a subgroup of patients with good clinical outcomes, in contrast with the AR-high or neuroendocrine PCs. Altogether, measuring the aggregate expression of APUC-6 genes in current genomic tests identifies PCs that are ligand (rather than AR) driven and require distinct therapeutic strategies.FUNDINGNCI/NIH 1R37CA288972-01, NCI Cancer Center Support P30 CA077598, DOD W81XWH-22-2-0025, R01 CA249279.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530133/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCI insightPub Date : 2024-10-22DOI: 10.1172/jci.insight.168440
Eun-Kyung Choi, Luisa Aring, Yujie Peng, Adele B Correia, Andrew P Lieberman, Shigeki Iwase, Young Ah Seo
{"title":"Neuronal SLC39A8 deficiency impairs cerebellar development by altering manganese homeostasis.","authors":"Eun-Kyung Choi, Luisa Aring, Yujie Peng, Adele B Correia, Andrew P Lieberman, Shigeki Iwase, Young Ah Seo","doi":"10.1172/jci.insight.168440","DOIUrl":"10.1172/jci.insight.168440","url":null,"abstract":"<p><p>Solute carrier family 39, member 8 (SLC39A8), is a transmembrane transporter that mediates the cellular uptake of zinc, iron, and manganese (Mn). Human genetic studies document the involvement of SLC39A8 in Mn homeostasis, brain development, and function. However, the role and pathophysiological mechanisms of SLC39A8 in the central nervous system remain elusive. We generated Slc39a8 neuron-specific knockout (Slc39a8-NSKO) mice to study SLC39A8 function in neurons. The Slc39a8-NSKO mice displayed markedly decreased Mn levels in the whole brain and brain regions, especially the cerebellum. Radiotracer studies using 54Mn revealed that Slc39a8-NSKO mice had impaired brain uptake of Mn. Slc39a8-NSKO cerebellums exhibited morphological defects and abnormal dendritic arborization of Purkinje cells. Reduced neurogenesis and increased apoptotic cell death occurred in the cerebellar external granular layer of Slc39a8-NSKO mice. Brain Mn deficiency in Slc39a8-NSKO mice was associated with motor dysfunction. Unbiased RNA-Seq analysis revealed downregulation of key pathways relevant to neurodevelopment and synaptic plasticity, including cAMP signaling pathway genes. We further demonstrated that Slc39a8 was required for the optimal transcriptional response to the cAMP-mediated signaling pathway. In summary, our study highlighted the essential roles of SLC39A8 in brain Mn uptake and cerebellum development and functions.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"9 20","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530126/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142465883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCI insightPub Date : 2024-10-22DOI: 10.1172/jci.insight.181005
Raquel M Miralles, Alexis R Boscia, Shrinidhi Kittur, Jessica C Hanflink, Payal S Panchal, Matthew S Yorek, Tyler C J Deutsch, Caeley M Reever, Shreya R Vundela, Eric R Wengert, Manoj K Patel
{"title":"Parvalbumin interneuron impairment causes synaptic transmission deficits and seizures in SCN8A developmental and epileptic encephalopathy.","authors":"Raquel M Miralles, Alexis R Boscia, Shrinidhi Kittur, Jessica C Hanflink, Payal S Panchal, Matthew S Yorek, Tyler C J Deutsch, Caeley M Reever, Shreya R Vundela, Eric R Wengert, Manoj K Patel","doi":"10.1172/jci.insight.181005","DOIUrl":"10.1172/jci.insight.181005","url":null,"abstract":"<p><p>SCN8A developmental and epileptic encephalopathy (DEE) is a severe epilepsy syndrome resulting from mutations in the voltage-gated sodium channel Nav1.6, encoded by the gene SCN8A. Nav1.6 is expressed in excitatory and inhibitory neurons, yet previous studies primarily focus on how SCN8A mutations affect excitatory neurons, with limited studies on the importance of inhibitory interneurons. Parvalbumin (PV) interneurons are a prominent inhibitory interneuron subtype that expresses Nav1.6. To assess PV interneuron function within SCN8A DEE, we used 2 mouse models harboring patient-derived SCN8A gain-of-function variants, Scn8aD/+, where the SCN8A variant N1768D is expressed globally, and Scn8aW/+-PV, where the SCN8A variant R1872W is selectively expressed in PV interneurons. Expression of the R1872W SCN8A variant selectively in PV interneurons led to development of spontaneous seizures and seizure-induced death. Electrophysiology studies showed that Scn8aD/+ and Scn8aW/+-PV interneurons were susceptible to depolarization block and exhibited increased persistent sodium current. Evaluation of synaptic connections between PV interneurons and pyramidal cells showed synaptic transmission deficits in Scn8aD/+ and Scn8aW/+-PV interneurons. Together, our findings indicate that PV interneuron failure via depolarization block along with inhibitory synaptic impairment likely elicits an overall inhibitory reduction in SCN8A DEE, leading to unchecked excitation and ultimately resulting in seizures and seizure-induced death.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"9 20","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529981/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142465884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCI insightPub Date : 2024-10-22DOI: 10.1172/jci.insight.172286
Hongshuai Liu, Lin Chen, Chuangchuang Zhang, Chang Liu, Yuguo Li, Liam Cheng, Yuxiao Ouyang, Catherine Rutledge, John Anderson, Zhiliang Wei, Ziqin Zhang, Hanzhang Lu, Peter Cm van Zijl, Jeffrey J Iliff, Jiadi Xu, Wenzhen Duan
{"title":"Glymphatic influx and clearance are perturbed in Huntington's disease.","authors":"Hongshuai Liu, Lin Chen, Chuangchuang Zhang, Chang Liu, Yuguo Li, Liam Cheng, Yuxiao Ouyang, Catherine Rutledge, John Anderson, Zhiliang Wei, Ziqin Zhang, Hanzhang Lu, Peter Cm van Zijl, Jeffrey J Iliff, Jiadi Xu, Wenzhen Duan","doi":"10.1172/jci.insight.172286","DOIUrl":"10.1172/jci.insight.172286","url":null,"abstract":"<p><p>The accumulation of mutant huntingtin protein aggregates in neurons is a pathological hallmark of Huntington's disease (HD). The glymphatic system, a brain-wide perivascular network, facilitates the exchange of interstitial fluid and cerebrospinal fluid (CSF), supporting interstitial solute clearance of brain wastes. In this study, we employed dynamic glucose-enhanced (DGE) MRI to measure d-glucose clearance from CSF as a tool to predict glymphatic function in a mouse model of HD. We found significantly diminished CSF clearance efficiency in HD mice before phenotypic onset. The impairment of CSF clearance efficiency worsened with disease progression. These DGE MRI findings in compromised glymphatic function were further verified with fluorescence-based imaging of CSF tracer influx, suggesting an impaired glymphatic function in premanifest HD. Moreover, expression of the astroglial water channel aquaporin-4 in the perivascular compartment, a key mediator of glymphatic function, was significantly diminished in both HD mouse brain and human HD brain. Our data, acquired using a clinically translatable MRI, indicate a perturbed glymphatic network in the HD brain. Further validation of these findings in clinical studies will provide insights into the potential of glymphatic clearance as a therapeutic target as well as an early biomarker in HD.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530125/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCI insightPub Date : 2024-10-17DOI: 10.1172/jci.insight.182390
Carl Coyle, Margaret Ma, Yann Abraham, Christopher B Mahony, Kathryn Steel, Catherine Simpson, Nadia Guerra, Adam P Croft, Stephen Rapecki, Andrew Cope, Rowann Bowcutt, Esperanza Perucha
{"title":"NK cell subsets define sustained remission in rheumatoid arthritis.","authors":"Carl Coyle, Margaret Ma, Yann Abraham, Christopher B Mahony, Kathryn Steel, Catherine Simpson, Nadia Guerra, Adam P Croft, Stephen Rapecki, Andrew Cope, Rowann Bowcutt, Esperanza Perucha","doi":"10.1172/jci.insight.182390","DOIUrl":"https://doi.org/10.1172/jci.insight.182390","url":null,"abstract":"<p><p>Rheumatoid Arthritis (RA) is an immune-mediated, chronic inflammatory condition. With modern therapeutics and evidence-based management strategies, achieving sustained remission is increasingly common. To prevent complications associated with prolonged use of immunosuppressants, drug tapering or withdrawal is recommended. However, due to the lack of tools that define immunological remission, disease flares are frequent, highlighting the need for a more precision medicine-based approach. Utilising high dimensional phenotyping platforms, we set out to define peripheral blood immunological signatures of sustained remission in RA. We identified that CD8+CD57+KIR2DL1+ NK cells are associated with sustained remission. Functional studies uncovered an NK cell subset characterized by normal degranulation responses and reduced pro-inflammatory cytokine expression, which was elevated in sustained remission. Furthermore, flow cytometric analysis of NK cells from synovial fluid combined with interrogation of a publicly available single cell RNA-seq dataset of synovial tissue from active RA identified a deficiency of the phenotypic characteristics associated with this NK cell remission signature. In summary, we have uncovered a novel RA remission signature associated with compositional changes in NK cell phenotype and function that has implications for understanding the impact of sustained remission on host immunity and distinct features which may define operational tolerance in RA.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142465873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}