JCI insightPub Date : 2024-10-08DOI: 10.1172/jci.insight.178801
Rachel L Spreng, Kelly E Seaton, Lin Lin, Sir'Tauria Hilliard, Gillian Q Horn, Milite Abraha, Aaron W Deal, Kan Li, Alexander J Carnacchi, Elizabeth Feeney, Siam Shabbir, Lu Zhang, Valerie Bekker, Sarah V Mudrak, Sheetij Dutta, Laina D Mercer, Scott Gregory, C Richter King, Ulrike Wille-Reece, Erik Jongert, Neville K Kisalu, Georgia D Tomaras, S Moses Dennison
{"title":"Identification of RTS,S/AS01 vaccine-induced humoral biomarkers predictive of protection against controlled human malaria infection.","authors":"Rachel L Spreng, Kelly E Seaton, Lin Lin, Sir'Tauria Hilliard, Gillian Q Horn, Milite Abraha, Aaron W Deal, Kan Li, Alexander J Carnacchi, Elizabeth Feeney, Siam Shabbir, Lu Zhang, Valerie Bekker, Sarah V Mudrak, Sheetij Dutta, Laina D Mercer, Scott Gregory, C Richter King, Ulrike Wille-Reece, Erik Jongert, Neville K Kisalu, Georgia D Tomaras, S Moses Dennison","doi":"10.1172/jci.insight.178801","DOIUrl":"10.1172/jci.insight.178801","url":null,"abstract":"<p><p>BACKGROUNDThe mechanism(s) responsible for the efficacy of WHO-recommended malaria vaccine RTS,S/AS01 are not completely understood. We previously identified RTS,S vaccine-induced Plasmodium falciparum circumsporozoite protein-specific (PfCSP-specific) antibody measures associated with protection from controlled human malaria infection (CHMI). Here, we tested the protection-predicting capability of these measures in independent CHMI studies.METHODSVaccine-induced total serum antibody (immunoglobulins, Igs) and subclass antibody (IgG1 and IgG3) responses were measured by biolayer interferometry and the binding antibody multiplex assay, respectively. Immune responses were compared between protected and nonprotected vaccinees using univariate and multivariate logistic regression.RESULTSBlinded prediction analysis showed that 5 antibody binding measures, including magnitude-avidity composite of serum Ig specific for PfCSP, major NANP repeats and N-terminal junction, and PfCSP- and NANP-specific IgG1 subclass magnitude, had good prediction accuracy (area under the receiver operating characteristic curves [ROC AUC] > 0.7) in at least 1 trial. Furthermore, univariate analysis showed a significant association between these antibody measures and protection (odds ratios 2.6-3.1). Multivariate modeling of combined data from 3 RTS,S CHMI trials identified the combination of IgG1 NANP binding magnitude plus serum NANP and N-junction Ig binding magnitude-avidity composite as the best predictor of protection (95% confidence interval for ROC AUC 0.693-0.834).CONCLUSIONThese results reinforce our previous findings and provide a tool for predicting protection in future trials.TRIAL REGISTRATIONClinicalTrials.gov NCT03162614, NCT03824236, NCT01366534, and NCT01857869.FUNDINGThis study was supported by Bill & Melinda Gates Foundation's Global Health-Discovery Collaboratory grants (INV-008612 and INV-043419) to GDT.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"9 19","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466194/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCI insightPub Date : 2024-10-08DOI: 10.1172/jci.insight.183189
Ailing Du, Kun Yang, Xuntao Zhou, Lingzhi Ren, Nan Liu, Chen Zhou, Jialing Liang, Nan Yan, Guangping Gao, Dan Wang
{"title":"Systemic gene therapy corrects the neurological phenotype in a mouse model of NGLY1 deficiency.","authors":"Ailing Du, Kun Yang, Xuntao Zhou, Lingzhi Ren, Nan Liu, Chen Zhou, Jialing Liang, Nan Yan, Guangping Gao, Dan Wang","doi":"10.1172/jci.insight.183189","DOIUrl":"10.1172/jci.insight.183189","url":null,"abstract":"<p><p>The cytoplasmic peptide:N-glycanase (NGLY1) is ubiquitously expressed and functions as a de-N-glycosylating enzyme that degrades misfolded N-glycosylated proteins. NGLY1 deficiency due to biallelic loss-of-function NGLY1 variants is an ultrarare autosomal recessive deglycosylation disorder with multisystemic involvement; the neurological manifestations represent the main disease burden. Currently, there is no treatment for this disease. To develop a gene therapy, we first characterized a tamoxifen-inducible Ngly1-knockout (iNgly1) C57BL/6J mouse model, which exhibited symptoms recapitulating human disease, including elevation of the biomarker GlcNAc-Asn, motor deficits, kyphosis, Purkinje cell loss, and gait abnormalities. We packaged a codon-optimized human NGLY1 transgene cassette into 2 adeno-associated virus (AAV) capsids, AAV9 and AAV.PHPeB. Systemic administration of the AAV.PHPeB vector to symptomatic iNgly1 mice corrected multiple disease features at 8 weeks after treatment. Furthermore, another cohort of AAV.PHPeB-treated iNgly1 mice were monitored over a year and showed near-complete normalization of the neurological aspects of the disease phenotype, demonstrating the durability of gene therapy. Our data suggested that brain-directed NGLY1 gene replacement via systemic delivery is a promising therapeutic strategy for NGLY1 deficiency. Although the superior CNS tropism of AAV.PHPeB vector does not translate to primates, emerging AAV capsids with enhanced primate CNS tropism will enable future translational studies.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466192/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCI insightPub Date : 2024-10-08DOI: 10.1172/jci.insight.180315
Luis R Cassinotti, Lingchao Ji, M Caroline Yuk, Aditi S Desai, Nathan D Cass, Zahara A Amir, Gabriel Corfas
{"title":"Hidden hearing loss in a Charcot-Marie-Tooth type 1A mouse model.","authors":"Luis R Cassinotti, Lingchao Ji, M Caroline Yuk, Aditi S Desai, Nathan D Cass, Zahara A Amir, Gabriel Corfas","doi":"10.1172/jci.insight.180315","DOIUrl":"10.1172/jci.insight.180315","url":null,"abstract":"<p><p>Hidden hearing loss (HHL), a recently described auditory neuropathy characterized by normal audiometric thresholds but reduced sound-evoked cochlear compound action potentials, has been proposed to contribute to hearing difficulty in noisy environments in people with normal hearing thresholds and has become a widespread complaint. While most studies on HHL pathogenesis have focused on inner hair cell (IHC) synaptopathy, we recently showed that transient auditory nerve (AN) demyelination also causes HHL in mice. To test the effect of myelinopathy on hearing in a clinically relevant model, we studied a mouse model of Charcot-Marie-Tooth type 1A (CMT1A), the most prevalent hereditary peripheral neuropathy in humans. CMT1A mice exhibited the functional hallmarks of HHL together with disorganization of AN heminodes near the IHCs with minor loss of AN fibers. These results support the hypothesis that mild disruptions of AN myelination can cause HHL and that heminodal defects contribute to the alterations in the sound-evoked cochlear compound action potentials seen in this mouse model. Furthermore, these findings suggest that patients with CMT1A or other mild peripheral neuropathies are likely to suffer from HHL. Furthermore, these results suggest that studies of hearing in patients with CMT1A might help develop robust clinical tests for HHL, which are currently lacking.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466197/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142043941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aldehyde dehydrogenase 2 preserves kidney function by countering acrolein-induced metabolic and mitochondrial dysfunction.","authors":"Szu-Yuan Li, Ming-Tsun Tsai, Yu-Ming Kuo, Hui-Min Yang, Zhen-Jie Tong, Hsiao-Wei Cheng, Chih-Ching Lin, Hsiang-Tsui Wang","doi":"10.1172/jci.insight.179871","DOIUrl":"10.1172/jci.insight.179871","url":null,"abstract":"<p><p>The prevalence of chronic kidney disease (CKD) varies by race because of genetic and environmental factors. The Glu504Lys polymorphism in aldehyde dehydrogenase 2 (ALDH2), commonly observed among East Asian people, alters the enzyme's function in detoxifying alcohol-derived aldehydes, affecting kidney function. This study investigated the association between variations in ALDH2 levels within the kidney and the progression of kidney fibrosis. Our clinical data indicate that diminished ALDH2 levels are linked to worse CKD outcomes, with correlations between ALDH2 expression, estimated glomerular filtration rate, urinary levels of acrolein - an aldehyde metabolized by ALDH2 - and fibrosis severity. In mouse models of unilateral ureteral obstruction and folic acid nephropathy, reduced ALDH2 levels and elevated acrolein were observed in kidneys, especially in ALDH2 Glu504Lys-knockin mice. Mechanistically, acrolein modifies pyruvate kinase M2, leading to its nuclear translocation and coactivation of HIF-1α, shifting cellular metabolism to glycolysis, disrupting mitochondrial function, and contributing to tubular damage and the progression of kidney fibrosis. Enhancing ALDH2 expression through adeno-associated virus vectors reduced acrolein and mitigated fibrosis in both WT and Glu504Lys-knockin mice. These findings underscore the potential therapeutic significance of targeting the dynamic interaction between ALDH2 and acrolein in CKD.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466184/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCI insightPub Date : 2024-10-08DOI: 10.1172/jci.insight.179599
Scott J Bright, Mandira Manandhar, David B Flint, Rishab Kolachina, Mariam Ben Kacem, David Kj Martinus, Broderick X Turner, Ilsa Qureshi, Conor H McFadden, Poliana C Marinello, Simona F Shaitelman, Gabriel O Sawakuchi
{"title":"ATR inhibition radiosensitizes cells through augmented DNA damage and G2 cell cycle arrest abrogation.","authors":"Scott J Bright, Mandira Manandhar, David B Flint, Rishab Kolachina, Mariam Ben Kacem, David Kj Martinus, Broderick X Turner, Ilsa Qureshi, Conor H McFadden, Poliana C Marinello, Simona F Shaitelman, Gabriel O Sawakuchi","doi":"10.1172/jci.insight.179599","DOIUrl":"10.1172/jci.insight.179599","url":null,"abstract":"<p><p>Ataxia telangiectasia and Rad3-related protein (ATR) is a key DNA damage response protein that facilitates DNA damage repair and regulates cell cycle progression. As such, ATR is an important component of the cellular response to radiation, particularly in cancer cells, which show altered DNA damage response and aberrant cell cycle checkpoints. Therefore, ATR's pharmacological inhibition could be an effective radiosensitization strategy to improve radiotherapy. We assessed the ability of an ATR inhibitor, AZD6738, to sensitize cancer cell lines of various histologic types to photon and proton radiotherapy. We found that radiosensitization took place through persistent DNA damage and abrogated G2 cell cycle arrest. We also found that AZD6738 increased the number of micronuclei after exposure to radiotherapy. We found that combining radiation with AZD6738 led to tumor growth delay and prolonged survival relative to radiation alone in a breast cancer model. Combining AZD6738 with photons or protons also led to increased macrophage infiltration at the tumor microenvironment. These results provide a rationale for further investigation of ATR inhibition in combination with radiotherapy and with other agents such as immune checkpoint blockade.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCI insightPub Date : 2024-10-08DOI: 10.1172/jci.insight.181238
David Y Zhang, Michael G Levin, Jeffrey T Duda, Latrice G Landry, Walter R Witschey, Scott M Damrauer, Marylyn D Ritchie, Daniel J Rader
{"title":"Protein-truncating variant in APOL3 increases chronic kidney disease risk in epistasis with APOL1 risk alleles.","authors":"David Y Zhang, Michael G Levin, Jeffrey T Duda, Latrice G Landry, Walter R Witschey, Scott M Damrauer, Marylyn D Ritchie, Daniel J Rader","doi":"10.1172/jci.insight.181238","DOIUrl":"10.1172/jci.insight.181238","url":null,"abstract":"<p><p>BACKGROUNDTwo coding alleles within the APOL1 gene, G1 and G2, found almost exclusively in individuals genetically similar to West African populations, contribute substantially to the pathogenesis of chronic kidney disease (CKD). The APOL gene cluster on chromosome 22 contains a total of 6 APOL genes that have arisen as a result of gene duplication.METHODSUsing a genome-first approach in the Penn Medicine BioBank, we identified 62 protein-altering variants in the 6 APOL genes with a minor allele frequency of >0.1% in a population of participants genetically similar to African reference populations and performed population-specific phenome-wide association studies.RESULTSWe identified rs1108978, a stop-gain variant in APOL3 (p.Q58*), to be significantly associated with increased CKD risk, even after conditioning on APOL1 G1/G2 carrier status. These findings were replicated in the Veterans Affairs Million Veteran Program and the All of Us Research Program. APOL3 p.Q58* was also significantly associated with a number of quantitative traits linked to CKD, including decreased kidney volume. This truncating variant contributed the most risk for CKD in patients monoallelic for APOL1 G1/G2, suggesting an epistatic interaction and a potential protective effect of wild-type APOL3 against APOL1-induced kidney disease.CONCLUSIONThis study demonstrates the utility of targeting population-specific variants in a genome-first approach, even in the context of well-studied gene-disease relationships.FUNDINGNational Heart, Lung, and Blood Institute (F30HL172382, R01HL169378, R01HL169458), Doris Duke Foundation (grant 2023-2024), National Institute of Biomedical Imaging and Bioengineering (P41EB029460), and National Center for Advancing Translational Sciences (UL1-TR-001878).</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCI insightPub Date : 2024-10-03DOI: 10.1172/jci.insight.184739
Chen Zhang, Qianqian Zhang, Jiani Chen, Han Li, Fuying Cheng, Yizhang Wang, Yingqi Gao, Yumin Zhou, Le Shi, Yufei Yang, Juan Liu, Kai Xue, Yaguang Zhang, Hongmeng Yu, Dehui Wang, Li Hu, Huan Wang, Xicai Sun
{"title":"Neutrophils in nasal polyps exhibit transcriptional adaptation and proinflammatory role depend on local polyp milieu.","authors":"Chen Zhang, Qianqian Zhang, Jiani Chen, Han Li, Fuying Cheng, Yizhang Wang, Yingqi Gao, Yumin Zhou, Le Shi, Yufei Yang, Juan Liu, Kai Xue, Yaguang Zhang, Hongmeng Yu, Dehui Wang, Li Hu, Huan Wang, Xicai Sun","doi":"10.1172/jci.insight.184739","DOIUrl":"https://doi.org/10.1172/jci.insight.184739","url":null,"abstract":"<p><p>Chronic rhinosinusitis with nasal polyps (CRSwNP) is an inflammatory upper airway disease, divided into eosinophilic CRSwNP (eCRSwNP) and noneosinophilic CRSwNP (neCRSwNP) according to eosinophilic levels. Neutrophils are major effector cells in CRSwNP. but their role in different inflammatory environments remain largely unclear. We performed an integrated transcriptome analysis of polyp-infiltrating neutrophils from CRSwNP patients, using healthy donor blood as a control. Flow cytometry and in vitro studies showed that neutrophils are activated in both CRSwNP type. The scRNA-sequencing analysis demonstrated that neutrophils were classified into five functional subsets, with GBP5+ neutrophils occurring mainly in neCRSwNPs and a high proportion of CXCL8+ neutrophils in both subendotypes. GBP5+ neutrophils exhibited significant IFN-I pathway activity in neCRSwNPs. CXCL8+ neutrophils displayed increased neutrophil activation scores and mainly secrete Oncostatin M (OSM), which facilitates communication with other cells. In vitro experiments revealed that OSM could enhance IL-13- or IL-17-mediated immune responses in nasal epithelial cells and fibroblasts. Our findings revealed that neutrophils exhibited transcriptional plasticity and activation when exposed to polyp tissue and exert their proinflammatory role in the pathogenesis of CRSwNP by releasing OSM to interact with epithelial cells and fibroblasts in a manner dependent on the inflammatory milieu.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCI insightPub Date : 2024-10-03DOI: 10.1172/jci.insight.174836
Chenyu Xu, Jiahong Wei, Dan Song, Siyu Zhao, Mingmin Hou, Yuchen Fan, Li Guo, Hao Sun, Tao Guo
{"title":"Effects of SIPA1L1 on trabecular meshwork extracellular matrix protein accumulation and cellular phagocytosis in POAG.","authors":"Chenyu Xu, Jiahong Wei, Dan Song, Siyu Zhao, Mingmin Hou, Yuchen Fan, Li Guo, Hao Sun, Tao Guo","doi":"10.1172/jci.insight.174836","DOIUrl":"https://doi.org/10.1172/jci.insight.174836","url":null,"abstract":"<p><p>Accumulation of extracellular matrix (ECM) proteins in trabecular meshwork (TM), which leads to increased outflow resistance of aqueous humor and consequently high intraocular pressure, is a major cause of primary open-angle glaucoma (POAG). According to our preliminary research, the RapGAP protein superfamily member, signal-induced proliferation-associated 1-like 1 protein (SIPA1L1), which is involved in tissue fibrosis, may have an impact on POAG by influencing ECM metabolism of TM. This study aims to confirm these findings and identify effects and cellular mechanisms of SIPA1L1 on ECM changes and phagocytosis in human TM (HTM) cells. Our results showed that the expression of SIPA1L1 in HTM cells was significantly increased by TGFβ2 treatment in Label-free quantitative proteomics. The aqueous humor and TM cells concentration of SIPA1L1 in POAG patients was higher than that of control. In HTM cells, TGFβ2 increased expression of SIPA1L1 along with accumulation of ECM, RhoA and p-Cofilin1. The effects of TGFβ2 were reduced by si-SIPA1L1. TGFβ2 decreased HTM cell phagocytosis by polymerizing cytoskeletal actin filaments, while si-SIPA1L1 increased phagocytosis by disassembling actin filaments. Simultaneously, overexpressing SIPA1L1 alone exhibited comparable effects to that of TGFβ2. Our studies demonstrate that SIPA1L1 not only promotes the production of ECM, but also inhibits its removal by reducing phagocytosis. Targeting SIPA1L1 degradation may become a significant therapy for POAG.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCI insightPub Date : 2024-10-03DOI: 10.1172/jci.insight.182087
Joshua S Carty, Ryoichi Bessho, Yvonne Zuchowski, Jonathan B Trapani, Olena Davidoff, Hanako Kobayashi, Joseph T Roland, Jason A Watts, Andrew S Terker, Fabian Bock, Juan Pablo Arroyo, Volker H Haase
{"title":"Disruption of mitochondrial electron transport impairs urinary concentration via AMPK-dependent suppression of aquaporin-2.","authors":"Joshua S Carty, Ryoichi Bessho, Yvonne Zuchowski, Jonathan B Trapani, Olena Davidoff, Hanako Kobayashi, Joseph T Roland, Jason A Watts, Andrew S Terker, Fabian Bock, Juan Pablo Arroyo, Volker H Haase","doi":"10.1172/jci.insight.182087","DOIUrl":"10.1172/jci.insight.182087","url":null,"abstract":"<p><p>Urinary concentration is an energy-dependent process that minimizes body water loss by increasing aquaporin-2 (AQP2) expression in collecting duct (CD) principal cells. To investigate the role of mitochondrial (mt) ATP production in renal water clearance, we disrupted mt electron transport in CD cells by targeting ubiquinone (Q) binding protein QPC (UQCRQ), a subunit of mt complex III essential for oxidative phosphorylation. QPC-deficient mice produced less concentrated urine than controls, both at baseline and after type 2 vasopressin receptor stimulation with desmopressin. Impaired urinary concentration in QPC-deficient mice was associated with reduced total AQP2 protein levels in CD tubules, while AQP2 phosphorylation and membrane trafficking remained unaffected. In cultured inner medullary CD cells treated with mt complex III inhibitor antimycin A, the reduction in AQP2 abundance was associated with activation of 5' adenosine monophosphate-activated protein kinase (AMPK) and was reversed by treatment with AMPK inhibitor SBI-0206965. In summary, our studies demonstrated that the physiological regulation of AQP2 abundance in principal CD cells was dependent on mt electron transport. Furthermore, our data suggested that oxidative phosphorylation in CD cells was dispensable for maintaining water homeostasis under baseline conditions, but necessary for maximal stimulation of AQP2 expression and urinary concentration.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic Transition of Regulatory T Cells to Cytotoxic Phenotype Amid Systemic Inflammation in Graves' Ophthalmopathy.","authors":"Zhong Liu, Shurui Ke, Zhuoxing Shi, Ming Zhou, Li Sun, Qihang Sun, Bing Xiao, Dongliang Wang, Yanjing Huang, Jinshan Lin, Huishi Wang, Qikai Zhang, Caineng Pan, Xuanwei Liang, Rongxin Chen, Zhen Mao, Xianchai Lin","doi":"10.1172/jci.insight.181488","DOIUrl":"https://doi.org/10.1172/jci.insight.181488","url":null,"abstract":"<p><p>Graves' disease (GD) is an autoimmune condition that can progress to Graves' Ophthalmopathy (GO), leading to irreversible damage to orbital tissues and potential blindness. The pathogenic mechanism is not fully understood. In this study, we conducted single-cell multi-omics analyses on healthy individuals, GD patients without GO, newly diagnosed GO patients, and treated GO patients. Our findings revealed gradual systemic inflammation during GO progression, marked by overactivation of cytotoxic effector T cell subsets, and expansion of specific T cell receptor clones. Importantly, we observed a decline in the immunosuppressive function of activated regulatory T cells (aTreg) accompanied by a cytotoxic phenotypic transition. In vitro experiments revealed that dysfunction and transition of GO-autoreactive Treg were regulated by the yinyang1 (YY1) upon secondary stimulation of thyroid stimulating hormone receptor (TSHR) under inflammatory conditions. Furthermore, adoptive transfer experiments of GO mouse model confirmed infiltration of these cytotoxic Treg into the orbital lesion tissues. Notably, these cells were found to upregulate inflammation and promote pathogenic fibrosis of orbital fibroblasts (OFs). Our results revealed the dynamic changes in immune landscape during GO progression and provided novel insights into the instability and phenotypic transition of Treg, offering potential targets for therapeutic intervention and prevention of autoimmune diseases.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}