JCI insight最新文献

筛选
英文 中文
Short-term disruption of TGF-β signaling in adult mice renders the aorta vulnerable to hypertension-induced dissection.
IF 6.3 1区 医学
JCI insight Pub Date : 2025-02-11 DOI: 10.1172/jci.insight.182629
Bo Jiang, Pengwei Ren, Changshun He, Mo Wang, Sae-Il Murtada, María Jesús Ruiz-Rodríguez, Yu Chen, Abhay B Ramachandra, Guangxin Li, Lingfeng Qin, Roland Assi, Martin A Schwartz, Jay D Humphrey, George Tellides
{"title":"Short-term disruption of TGF-β signaling in adult mice renders the aorta vulnerable to hypertension-induced dissection.","authors":"Bo Jiang, Pengwei Ren, Changshun He, Mo Wang, Sae-Il Murtada, María Jesús Ruiz-Rodríguez, Yu Chen, Abhay B Ramachandra, Guangxin Li, Lingfeng Qin, Roland Assi, Martin A Schwartz, Jay D Humphrey, George Tellides","doi":"10.1172/jci.insight.182629","DOIUrl":"10.1172/jci.insight.182629","url":null,"abstract":"<p><p>Hypertension and transient increases in blood pressure from extreme exertion are risk factors for aortic dissection in patients with age-related vascular degeneration or inherited connective tissue disorders. Yet, a common experimental model of angiotensin II-induced aortopathy in mice appears independent of high blood pressure, as lesions do not occur in response to an alternative vasoconstrictor, norepinephrine, and are not prevented by cotreatment with a vasodilator, hydralazine. We investigated vasoconstrictor administration to adult mice following 1 week of disrupted TGF-β signaling in smooth muscle cells (SMCs). Norepinephrine increased blood pressure and induced aortic dissection by 7 days and even within 30 minutes (as did angiotensin II) that was prevented by hydralazine. Initial medial injury manifested as blood extravasation among SMCs and fibrillar matrix, progressive delamination from accumulation of blood, and stretched or ruptured SMCs with persistent attachments to elastic fibers. Altered regulatory contractile molecule expression was not of pathological importance. Rather, reduced synthesis of extracellular matrix yielded a vulnerable aortic phenotype by decreasing medial collagen, most dynamically basement membrane-associated multiplexin collagen, and impairing cell-matrix adhesion. We conclude that transient and sustained increases in blood pressure can cause dissection in aortas rendered vulnerable by inhibition of TGF-β-driven extracellular matrix production by SMCs.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949005/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loss of long-chain acyl-CoA dehydrogenase protects against acute kidney injury.
IF 6.3 1区 医学
JCI insight Pub Date : 2025-02-11 DOI: 10.1172/jci.insight.186073
Takuto Chiba, Akira Oda, Yuxun Zhang, Katherine Pfister, Joanna Bons, Sivakama S Bharathi, Ayako Kinoshita, Bob B Zhang, Adam Richert, Birgit Schilling, Eric Goetzman, Sunder Sims-Lucas
{"title":"Loss of long-chain acyl-CoA dehydrogenase protects against acute kidney injury.","authors":"Takuto Chiba, Akira Oda, Yuxun Zhang, Katherine Pfister, Joanna Bons, Sivakama S Bharathi, Ayako Kinoshita, Bob B Zhang, Adam Richert, Birgit Schilling, Eric Goetzman, Sunder Sims-Lucas","doi":"10.1172/jci.insight.186073","DOIUrl":"10.1172/jci.insight.186073","url":null,"abstract":"<p><p>The renal tubular epithelial cells (RTECs) are particularly vulnerable to acute kidney injury (AKI). While fatty acids are the preferred energy source for RTECs via fatty acid oxidation (FAO), FAO-mediated H2O2 production in mitochondria has been shown to be a major source of oxidative stress. We have previously shown that a mitochondrial flavoprotein, long-chain acyl-CoA dehydrogenase (LCAD), which catalyzes a key step in mitochondrial FAO, directly produces H2O2 in vitro. Furthermore, we showed that renal LCAD becomes hyposuccinylated during AKI. Here, we demonstrated that succinylation of recombinant LCAD protein suppresses the production of H2O2. Following 2 distinct models of AKI, cisplatin treatment or renal ischemia/reperfusion injury (IRI), LCAD-/- mice demonstrated renoprotection. Specifically, LCAD-/- kidneys displayed mitigated renal tubular injury, decreased oxidative stress, preserved mitochondrial function, enhanced peroxisomal FAO, and decreased ferroptotic cell death. LCAD deficiency confers protection against 2 distinct models of AKI. This suggests a therapeutically attractive mechanism whereby preserved mitochondrial respiration as well as enhanced peroxisomal FAO by loss of LCAD mediates renoprotection against AKI.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative hypermorphic FAM111A alleles cause autosomal recessive Kenny-Caffey syndrome type 2 and osteocraniostenosis.
IF 6.3 1区 医学
JCI insight Pub Date : 2025-02-11 DOI: 10.1172/jci.insight.186862
Dong Li, Niels Mailand, Emma Ewing, Saskia Hoffmann, Richard C Caswell, Lewis Pang, Jacqueline Eason, Ying Dou, Kathleen E Sullivan, Hakon Hakonarson, Michael A Levine
{"title":"Quantitative hypermorphic FAM111A alleles cause autosomal recessive Kenny-Caffey syndrome type 2 and osteocraniostenosis.","authors":"Dong Li, Niels Mailand, Emma Ewing, Saskia Hoffmann, Richard C Caswell, Lewis Pang, Jacqueline Eason, Ying Dou, Kathleen E Sullivan, Hakon Hakonarson, Michael A Levine","doi":"10.1172/jci.insight.186862","DOIUrl":"10.1172/jci.insight.186862","url":null,"abstract":"<p><p>Kenny-Caffey syndrome (KCS) is a rare genetic disorder characterized by extreme short stature, cortical thickening and medullary stenosis of tubular bones, facial dysmorphism, abnormal T cell function, and hypoparathyroidism. Biallelic loss-of-function variants in TBCE cause autosomal recessive type 1 KCS (KCS1). By contrast, heterozygous missense variants in a restricted region of the FAM111A gene have been identified in autosomal dominant type 2 KCS (KCS2) and a more severe lethal phenotype, osteocraniostenosis (OCS); these variants have recently been shown to confer a gain of function. In this study, we describe 2 unrelated children with KCS and OCS who were homozygous for different FAM111A variant alleles that result in replacement of the same residue, Tyr414 (c.1241A>G, p.Y414C and c.1240T>A, p.Y414N), in the mature FAM111A protein. Their heterozygous relatives are asymptomatic. Functional studies of recombinant FAM111AY414C demonstrated normal dimerization and a mild gain-of-function effect. This study provides evidence that both biallelic and monoallelic variants of FAM111A with varying degrees of activation can lead to dominant or recessive KCS2 and OCS.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949059/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The AURKA inhibitor alters the immune microenvironment and enhances targeting B7-H3 immunotherapy in glioblastoma.
IF 6.3 1区 医学
JCI insight Pub Date : 2025-02-10 DOI: 10.1172/jci.insight.173700
Jinqiu Liu, Yuxuan Deng, Zhuonan Pu, Yazhou Miao, Zhaonian Hao, Herui Wang, Shaodong Zhang, Hanjie Liu, Jiejun Wang, Yifan Lv, Boyi Hu, Hong Wan, Zhengping Zhuang, Tai Sun, Shuyu Hao, Nan Ji, Jie Feng
{"title":"The AURKA inhibitor alters the immune microenvironment and enhances targeting B7-H3 immunotherapy in glioblastoma.","authors":"Jinqiu Liu, Yuxuan Deng, Zhuonan Pu, Yazhou Miao, Zhaonian Hao, Herui Wang, Shaodong Zhang, Hanjie Liu, Jiejun Wang, Yifan Lv, Boyi Hu, Hong Wan, Zhengping Zhuang, Tai Sun, Shuyu Hao, Nan Ji, Jie Feng","doi":"10.1172/jci.insight.173700","DOIUrl":"10.1172/jci.insight.173700","url":null,"abstract":"<p><p>Glioblastoma (GBM) is one of the most lethal adult brain tumors with limited effective therapeutic options. Immunotherapy targeting B7-H3 (CD276) has shown promising efficacy in the treatment of gliomas. However, the response to this treatment varies among glioma patients due to individual differences. It's necessary to find an effective strategy to improve the efficacy of targeting B7-H3 immunotherapy for nonresponders. In this study, we demonstrated a strong correlation between aurora kinase A (AURKA) and CD276 expression in glioma tissue samples. Additionally, both AURKA knockdown and overexpression resulted in parallel changes in B7-H3 expression levels in glioma cells. Mechanistically, AURKA elevated B7-H3 expression by promoting epidermal growth factor receptor (EGFR) phosphorylation, which was validated in glioma cell lines and primary GBM cells. What's more, the combination of AURKA inhibitor (alisertib) and anti-B7-H3 antibody markedly reduced tumor size and promoted CD8+ T cell infiltration and activation in mouse orthotopic syngeneic glioma models. To our knowledge, this study is the first to demonstrate AURKA-mediated B7-H3 upregulation in glioma cells; moreover, it proposes a promising therapeutic strategy combining the AURKA inhibitor alisertib with B7-H3-specific blocking mAbs.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949004/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143391009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prenatal alcohol exposure is associated with altered feto-placental blood flow and sex-specific placental changes.
IF 6.3 1区 医学
JCI insight Pub Date : 2025-02-10 DOI: 10.1172/jci.insight.186096
Sarah E Steane, Christopher Edwards, Erika Cavanagh, Chelsea Vanderpeet, Jade M Kubler, Lisa K Akison, James Sm Cuffe, Linda A Gallo, Karen M Moritz, Vicki L Clifton
{"title":"Prenatal alcohol exposure is associated with altered feto-placental blood flow and sex-specific placental changes.","authors":"Sarah E Steane, Christopher Edwards, Erika Cavanagh, Chelsea Vanderpeet, Jade M Kubler, Lisa K Akison, James Sm Cuffe, Linda A Gallo, Karen M Moritz, Vicki L Clifton","doi":"10.1172/jci.insight.186096","DOIUrl":"10.1172/jci.insight.186096","url":null,"abstract":"<p><p>BACKGROUNDPrenatal alcohol exposure (PAE) around conception in preclinical models results in placental insufficiency, likely contributing to offspring abnormalities. Altered placental DNA methylation (DNAm) and gene expression suggest epigenetic mechanisms, perhaps involving impacts on methyl donor levels. PAE around conception in women is common but placental effects are rarely examined. This cohort study investigated associations between PAE around conception and intake/plasma measures of the methyl donors folate and choline, feto-placental blood flow, and placental growth measures, gene expression, and DNAm.METHODSPregnant participants delivered at Mater Mothers' Hospital, Brisbane, Queensland, Australia (n = 411). Dietary intake of choline and folate were calculated and plasma concentrations measured using mass spectrometry (MS) and clinical immunoanalyzer, respectively. Cerebroplacental ratio (CPR) was calculated using Doppler measurements. Placentas were weighed/measured at delivery and samples used to quantify methyl donors (MS), global DNAm (ELISA), and gene expression (quantitative PCR). Data were compared between control/abstinent and PAE groups, by fetal sex.RESULTSA CPR <5th-centile, indicating fetal brain sparing because of placental insufficiency, was found in 2% of controls and 18% of the PAE group, mostly male fetuses (63%). Compared with controls, male PAE placentas had reduced mean thickness and placental growth factor mRNA and DNAm, whereas female PAE placentas had increased S-adenosylmethionine and a trend toward increased DNAm.CONCLUSIONPAE around conception is associated with reduced CPR and altered placental growth measures, particularly in males, with potential implications for future health.FUNDINGNational Health and Medical Research Council (APP1191217) and Mary McConnel Career Boost Program for Women in Paediatric Research (WIS132020).</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 3","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948586/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial GSDMD underlies LPS-induced systemic vascular injury and lethality.
IF 6.3 1区 医学
JCI insight Pub Date : 2025-02-10 DOI: 10.1172/jci.insight.182398
Enyong Su, Xiaoyue Song, Lili Wei, Junqiang Xue, Xuelin Cheng, Shiyao Xie, Hong Jiang, Ming Liu
{"title":"Endothelial GSDMD underlies LPS-induced systemic vascular injury and lethality.","authors":"Enyong Su, Xiaoyue Song, Lili Wei, Junqiang Xue, Xuelin Cheng, Shiyao Xie, Hong Jiang, Ming Liu","doi":"10.1172/jci.insight.182398","DOIUrl":"10.1172/jci.insight.182398","url":null,"abstract":"<p><p>Endothelial injury destroys endothelial barrier integrity, triggering organ dysfunction and ultimately resulting in sepsis-related death. Considerable attention has been focused on identifying effective targets for inhibiting damage to endothelial cells to treat endotoxemia-induced septic shock. Global gasdermin D (Gsdmd) deletion reportedly prevents death caused by endotoxemia. However, the role of endothelial GSDMD in endothelial injury and lethality in lipopolysaccharide-induced (LPS-induced) endotoxemia and the underlying regulatory mechanisms are unknown. Here, we show that LPS increases endothelial GSDMD level in aortas and lung microvessels. We demonstrated that endothelial Gsdmd deficiency, but not myeloid cell Gsdmd deletion, protects against endothelial injury and death in mice with endotoxemia or sepsis. In vivo experiments suggested that hepatocyte GSDMD mediated the release of high-mobility group box 1, which subsequently binds to the receptor for advanced glycation end products in endothelial cells to cause systemic vascular injury, ultimately resulting in acute lung injury and lethality in shock driven by endotoxemia or sepsis. Additionally, inhibiting endothelial GSDMD activation via a polypeptide inhibitor alleviated endothelial damage and improved survival in a mouse model of endotoxemia or sepsis. These data suggest that endothelial GSDMD is a viable pharmaceutical target for treating endotoxemia and endotoxemia-induced sepsis.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 3","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948583/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Longitudinal clinical and proteomic diabetes signatures in women with a history of gestational diabetes.
IF 6.3 1区 医学
JCI insight Pub Date : 2025-02-10 DOI: 10.1172/jci.insight.191787
Heaseung Sophia Chung, Lawrence Middleton, Manik Garg, Ventzislava A Hristova, Rick B Vega, David Baker, Benjamin G Challis, Dimitrios Vitsios, Sonja Hess, Kristina Wallenius, Agneta Holmäng, Ulrika Andersson-Hall
{"title":"Longitudinal clinical and proteomic diabetes signatures in women with a history of gestational diabetes.","authors":"Heaseung Sophia Chung, Lawrence Middleton, Manik Garg, Ventzislava A Hristova, Rick B Vega, David Baker, Benjamin G Challis, Dimitrios Vitsios, Sonja Hess, Kristina Wallenius, Agneta Holmäng, Ulrika Andersson-Hall","doi":"10.1172/jci.insight.191787","DOIUrl":"10.1172/jci.insight.191787","url":null,"abstract":"","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 3","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948573/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of lung progenitor plasticity and repair by fatty acid oxidation.
IF 6.3 1区 医学
JCI insight Pub Date : 2025-02-10 DOI: 10.1172/jci.insight.165837
Quetzalli D Angeles-Lopez, Jhonny Rodriguez-Lopez, Paula Agudelo Garcia, Jazmin Calyeca, Diana Álvarez, Marta Bueno, Lan N Tu, Myriam Salazar-Terreros, Natalia Vanegas-Avendaño, Jordan E Krull, Aigul Moldobaeva, Srimathi Bogamuwa, Stephanie S Scott, Victor Peters, Brenda F Reader, Sruti Shiva, Michael Jurczak, Mahboobe Ghaedi, Qin Ma, Toren Finkel, Mauricio Rojas, Ana L Mora
{"title":"Regulation of lung progenitor plasticity and repair by fatty acid oxidation.","authors":"Quetzalli D Angeles-Lopez, Jhonny Rodriguez-Lopez, Paula Agudelo Garcia, Jazmin Calyeca, Diana Álvarez, Marta Bueno, Lan N Tu, Myriam Salazar-Terreros, Natalia Vanegas-Avendaño, Jordan E Krull, Aigul Moldobaeva, Srimathi Bogamuwa, Stephanie S Scott, Victor Peters, Brenda F Reader, Sruti Shiva, Michael Jurczak, Mahboobe Ghaedi, Qin Ma, Toren Finkel, Mauricio Rojas, Ana L Mora","doi":"10.1172/jci.insight.165837","DOIUrl":"10.1172/jci.insight.165837","url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is an age-related interstitial lung disease, characterized by inadequate alveolar regeneration and ectopic bronchiolization. While some molecular pathways regulating lung progenitor cells have been described, the role of metabolic pathways in alveolar regeneration is poorly understood. We report that expression of fatty acid oxidation (FAO) genes is significantly diminished in alveolar epithelial cells of IPF lungs by single-cell RNA sequencing and tissue staining. Genetic and pharmacological inhibition in AT2 cells of carnitine palmitoyltransferase 1a (CPT1a), the rate-limiting enzyme of FAO, promoted mitochondrial dysfunction and acquisition of aberrant intermediate states expressing basaloid, and airway secretory cell markers SCGB1A1 and SCGB3A2. Furthermore, mice with deficiency of CPT1a in AT2 cells show enhanced susceptibility to developing lung fibrosis with an accumulation of epithelial cells expressing markers of intermediate cells, airway secretory cells, and senescence. We found that deficiency of CPT1a causes a decrease in SMAD7 protein levels and TGF-β signaling pathway activation. These findings suggest that the mitochondrial FAO metabolic pathway contributes to the regulation of lung progenitor cell repair responses and deficiency of FAO contributes to aberrant lung repair and the development of lung fibrosis.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 3","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948574/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AURKB inhibition induces rhabdomyosarcoma apoptosis and ferroptosis through NPM1/SP1/ACSL5 axis.
IF 6.3 1区 医学
JCI insight Pub Date : 2025-02-10 DOI: 10.1172/jci.insight.182429
Huimou Chen, Mengzhen Li, Yu Zhang, Mengjia Song, Yi Que, Juan Wang, Feifei Sun, Jia Zhu, Junting Huang, Juan Liu, Jiaqian Xu, Suying Lu, Yizhuo Zhang
{"title":"AURKB inhibition induces rhabdomyosarcoma apoptosis and ferroptosis through NPM1/SP1/ACSL5 axis.","authors":"Huimou Chen, Mengzhen Li, Yu Zhang, Mengjia Song, Yi Que, Juan Wang, Feifei Sun, Jia Zhu, Junting Huang, Juan Liu, Jiaqian Xu, Suying Lu, Yizhuo Zhang","doi":"10.1172/jci.insight.182429","DOIUrl":"10.1172/jci.insight.182429","url":null,"abstract":"<p><p>Rhabdomyosarcoma (RMS) is one of the most common solid tumors in children and adolescents. Patients with relapsed/refractory RMS have limited treatment options, highlighting the urgency for the identification of novel therapeutic targets for RMS. In the present study, aurora kinase B (AURKB) was found to be highly expressed in RMS and associated with unfavorable prognosis of patients. Functional experiments indicated that inhibition of AURKB significantly reduced RMS cell proliferation, induced apoptosis and ferroptosis, and suppressed RMS growth in vivo. The highly expressed AURKB in RMS contributes to the apoptosis and ferroptosis resistance of tumor cells through the nucleophosmin 1 (NPM1)/Sp1 transcription factor (SP1)/acyl-CoA synthetase long-chain family member 5 (ACSL5) axis. Furthermore, inhibition of AURKB exerted an anti-RMS effect together with vincristine both in vitro and in vivo, with tolerable toxicity. The above findings provide insights we believe are new into the tumorigenesis of RMS, especially with regard to apoptosis or ferroptosis resistance, indicating that AURKB may be a potential target for clinical intervention in patients with RMS.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 3","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948576/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping cell diversity and dynamics in inflammatory temporomandibular joint osteoarthritis with pain at single-cell resolution.
IF 6.3 1区 医学
JCI insight Pub Date : 2025-02-10 DOI: 10.1172/jci.insight.184379
Supawadee Jariyasakulroj, Yang Shu, Ziying Lin, Jingyi Chen, Qing Chang, Pao-Fen Ko, Jian-Fu Chen
{"title":"Mapping cell diversity and dynamics in inflammatory temporomandibular joint osteoarthritis with pain at single-cell resolution.","authors":"Supawadee Jariyasakulroj, Yang Shu, Ziying Lin, Jingyi Chen, Qing Chang, Pao-Fen Ko, Jian-Fu Chen","doi":"10.1172/jci.insight.184379","DOIUrl":"10.1172/jci.insight.184379","url":null,"abstract":"<p><p>Temporomandibular joint (TMJ) osteoarthritis with pain is a highly prevalent disorder affecting patients' quality of life. A comprehensive understanding of cell type diversity and its dynamics in painful TMJ osteoarthritis (TMJOA) is lacking. Here, we utilized an inflammatory TMJOA mouse model via intra-articular injection of CFA. TMJOA mice exhibited cartilage remodeling, bone loss, synovitis, increased osteoarthritis (OA) score, and orofacial pain, recapitulating hallmark symptoms in patients. Single-cell transcriptomic profiling of the TMJ was performed in conjunction with mouse genetic labeling, tissue clearing, light sheet and confocal 3D imaging, multiplex RNAscope, and immunodetection. We visualized, reconstructed, and analyzed the distribution and density of nociceptive innervation of TMJ at single-axon levels. We systematically mapped the heterogeneity and anatomical position of blood endothelial cells, synovial fibroblasts, and immune cells, including Cx3cr1-positive barrier macrophages. Importantly, TMJOA mice exhibited enhanced neurovascular coupling, sublining fibroblast hyperplasia, inflammatory immune cell expansion, disrupted signaling-dependent cell-cell interaction, and a breakdown of the sandwich-like organization consisting of synovial barrier macrophages and fibroblasts. By utilizing a mouse model with combined TMJ pain history and OA, we reveal the cellular diversity, anatomical structure, and cell dynamics of the TMJ at single-cell resolution, which facilitate our understanding and potential targeting of TMJOA.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 3","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948589/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信