Elisabeth Fließer, Katharina Jandl, Shiau-Haln Chen, Mei-Tzu Wang, Jonas C Schupp, Wolfgang M Kuebler, Andrew H Baker, Grazyna Kwapiszewska
{"title":"Transcriptional signatures of endothelial cells shape immune responses in cardiopulmonary health and disease.","authors":"Elisabeth Fließer, Katharina Jandl, Shiau-Haln Chen, Mei-Tzu Wang, Jonas C Schupp, Wolfgang M Kuebler, Andrew H Baker, Grazyna Kwapiszewska","doi":"10.1172/jci.insight.191059","DOIUrl":null,"url":null,"abstract":"<p><p>The cardiopulmonary vasculature and its associated endothelial cells (ECs) play an essential role in sustaining life by ensuring the delivery of oxygen and nutrients. Beyond these foundational functions, ECs serve as key regulators of immune responses. Recent advances in single-cell RNA sequencing have revealed that the cardiopulmonary vasculature is composed of diverse EC subpopulations, some of which exhibit specialized immunomodulatory properties. Evidence for immunomodulation includes distinct expression profiles associated with antigen presentation, cytokine secretion, immune cell recruitment, translocation, and clearance - functions critical for maintaining homeostasis in the heart and lungs. In cardiopulmonary diseases, ECs undergo substantial transcriptional reprogramming, leading to a shift from homeostasis to an activated state marked by heightened immunomodulatory activity. This transformation has highlighted the critical role for ECs in disease pathogenesis and their potential as future therapy targets. This Review emphasizes the diverse functions of ECs in the heart and lungs, particularly adaptive and maladaptive immunoregulatory roles in cardiopulmonary health and disease.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 10","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12128986/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.191059","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The cardiopulmonary vasculature and its associated endothelial cells (ECs) play an essential role in sustaining life by ensuring the delivery of oxygen and nutrients. Beyond these foundational functions, ECs serve as key regulators of immune responses. Recent advances in single-cell RNA sequencing have revealed that the cardiopulmonary vasculature is composed of diverse EC subpopulations, some of which exhibit specialized immunomodulatory properties. Evidence for immunomodulation includes distinct expression profiles associated with antigen presentation, cytokine secretion, immune cell recruitment, translocation, and clearance - functions critical for maintaining homeostasis in the heart and lungs. In cardiopulmonary diseases, ECs undergo substantial transcriptional reprogramming, leading to a shift from homeostasis to an activated state marked by heightened immunomodulatory activity. This transformation has highlighted the critical role for ECs in disease pathogenesis and their potential as future therapy targets. This Review emphasizes the diverse functions of ECs in the heart and lungs, particularly adaptive and maladaptive immunoregulatory roles in cardiopulmonary health and disease.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.