髓细胞和平滑肌细胞STING在肺动脉高压中的相反作用。

IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Ann T Pham, Shiza Virk, Aline C Oliveira, Matthew D Alves, Chunhua Fu, Yutao Zhang, Jimena Alvarez-Castanon, Brian B Lee, Keira L Lee, Radwan Mashina, Katherine E Ray, Patrick Donabedian, Elnaz Ebrahimi, Harsh Patel, Reeha Patel, Duncan Lewis, Zhiguang Huo, Harry Karmouty-Quintana, Li Chen, Lei Jin, Andrew J Bryant
{"title":"髓细胞和平滑肌细胞STING在肺动脉高压中的相反作用。","authors":"Ann T Pham, Shiza Virk, Aline C Oliveira, Matthew D Alves, Chunhua Fu, Yutao Zhang, Jimena Alvarez-Castanon, Brian B Lee, Keira L Lee, Radwan Mashina, Katherine E Ray, Patrick Donabedian, Elnaz Ebrahimi, Harsh Patel, Reeha Patel, Duncan Lewis, Zhiguang Huo, Harry Karmouty-Quintana, Li Chen, Lei Jin, Andrew J Bryant","doi":"10.1172/jci.insight.184792","DOIUrl":null,"url":null,"abstract":"<p><p>There is an emerging role for Stimulator of interferon genes (STING) signaling in pulmonary hypertension (PH) development. Related, prior resesarch has demonstrated the relevance of the immune checkpoint protein Programmed death ligand 1 (PD-L1) expression by immunoregulatory myeloid cells in PH. However, there remains a need to elucidate the cell-specific role of STING expression, and the STING/PD-L1 signaling axis in PH, before readily available disease-modifying therapies can be applied to patients with disease. Here, through generation of bone marrow chimeric mice, we show that STING-/- mice receiving wild-type (WT) bone marrow are protected against PH secondary to chronic hypoxia. We further demonstrate a cellular dichotomous role for STING in PH development with STING expression by smooth muscle cells contributing to PH, and its activation on myeloid cells being pivotal in severe disease prevention. Finally, we provide evidence that a STING-PD-L1 axis modulates disease severity, suggesting future potential therapeutic applications. Overall, these data provide concrete evidence of STING involvement in PH in a cell-specific manner, establishing biologic plausibility for cell-targeted STING-related therapies in PH treatment.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Opposing role for myeloid and smooth muscle cell STING in pulmonary hypertension.\",\"authors\":\"Ann T Pham, Shiza Virk, Aline C Oliveira, Matthew D Alves, Chunhua Fu, Yutao Zhang, Jimena Alvarez-Castanon, Brian B Lee, Keira L Lee, Radwan Mashina, Katherine E Ray, Patrick Donabedian, Elnaz Ebrahimi, Harsh Patel, Reeha Patel, Duncan Lewis, Zhiguang Huo, Harry Karmouty-Quintana, Li Chen, Lei Jin, Andrew J Bryant\",\"doi\":\"10.1172/jci.insight.184792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is an emerging role for Stimulator of interferon genes (STING) signaling in pulmonary hypertension (PH) development. Related, prior resesarch has demonstrated the relevance of the immune checkpoint protein Programmed death ligand 1 (PD-L1) expression by immunoregulatory myeloid cells in PH. However, there remains a need to elucidate the cell-specific role of STING expression, and the STING/PD-L1 signaling axis in PH, before readily available disease-modifying therapies can be applied to patients with disease. Here, through generation of bone marrow chimeric mice, we show that STING-/- mice receiving wild-type (WT) bone marrow are protected against PH secondary to chronic hypoxia. We further demonstrate a cellular dichotomous role for STING in PH development with STING expression by smooth muscle cells contributing to PH, and its activation on myeloid cells being pivotal in severe disease prevention. Finally, we provide evidence that a STING-PD-L1 axis modulates disease severity, suggesting future potential therapeutic applications. Overall, these data provide concrete evidence of STING involvement in PH in a cell-specific manner, establishing biologic plausibility for cell-targeted STING-related therapies in PH treatment.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.184792\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.184792","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

干扰素基因刺激因子(STING)信号在肺动脉高压(PH)的发展中起着新的作用。相关的,先前的研究已经证明了免疫检查点蛋白程序性死亡配体1 (PD-L1)在PH中的表达与免疫调节性骨髓细胞的相关性。然而,在易于获得的疾病修饰疗法可以应用于疾病患者之前,仍然需要阐明STING表达的细胞特异性作用,以及STING/PD-L1信号轴在PH中的作用。在这里,通过骨髓嵌合小鼠的产生,我们发现接受野生型(WT)骨髓的STING-/-小鼠具有抗慢性缺氧继发性PH的保护作用。我们进一步证明了STING在PH发展中的细胞分化作用,平滑肌细胞表达的STING有助于PH,而其在髓细胞上的激活在严重疾病的预防中起关键作用。最后,我们提供了STING-PD-L1轴调节疾病严重程度的证据,提出了未来潜在的治疗应用。总之,这些数据提供了STING以细胞特异性方式参与PH的具体证据,为细胞靶向STING相关疗法在PH治疗中建立了生物学上的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Opposing role for myeloid and smooth muscle cell STING in pulmonary hypertension.

There is an emerging role for Stimulator of interferon genes (STING) signaling in pulmonary hypertension (PH) development. Related, prior resesarch has demonstrated the relevance of the immune checkpoint protein Programmed death ligand 1 (PD-L1) expression by immunoregulatory myeloid cells in PH. However, there remains a need to elucidate the cell-specific role of STING expression, and the STING/PD-L1 signaling axis in PH, before readily available disease-modifying therapies can be applied to patients with disease. Here, through generation of bone marrow chimeric mice, we show that STING-/- mice receiving wild-type (WT) bone marrow are protected against PH secondary to chronic hypoxia. We further demonstrate a cellular dichotomous role for STING in PH development with STING expression by smooth muscle cells contributing to PH, and its activation on myeloid cells being pivotal in severe disease prevention. Finally, we provide evidence that a STING-PD-L1 axis modulates disease severity, suggesting future potential therapeutic applications. Overall, these data provide concrete evidence of STING involvement in PH in a cell-specific manner, establishing biologic plausibility for cell-targeted STING-related therapies in PH treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JCI insight
JCI insight Medicine-General Medicine
CiteScore
13.70
自引率
1.20%
发文量
543
审稿时长
6 weeks
期刊介绍: JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信