Dominique Bataille, Susan L. Chan, Philippe Delagrange, Daniel J. Drucker, Burkhard Göke, Rebecca Hills, Kelly E. Mayo, Laurence J. Miller, Roberto Salvatori, Bernard Thorens
{"title":"Glucagon receptor family in GtoPdb v.2023.1","authors":"Dominique Bataille, Susan L. Chan, Philippe Delagrange, Daniel J. Drucker, Burkhard Göke, Rebecca Hills, Kelly E. Mayo, Laurence J. Miller, Roberto Salvatori, Bernard Thorens","doi":"10.2218/gtopdb/f29/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f29/2023.1","url":null,"abstract":"The glucagon family of receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on the Glucagon receptor family [165]) are activated by the endogenous peptide (27-44 aa) hormones glucagon, glucagon-like peptide 1, glucagon-like peptide 2, glucose-dependent insulinotropic polypeptide (also known as gastric inhibitory polypeptide), GHRH and secretin. One common precursor (GCG) generates glucagon, glucagon-like peptide 1 and glucagon-like peptide 2 peptides [121]. For a recent review on the current understanding of the structures of GLP-1 and GLP-1R, the molecular basis of their interaction, and the associated signaling events see de Graaf et al., 2016 [90].","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135017424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richard Aldrich, K. George Chandy, Stephan Grissmer, George A. Gutman, Leonard K. Kaczmarek, Aguan D. Wei, Heike Wulff
{"title":"Calcium- and sodium-activated potassium channels (K<sub>Ca</sub>, K<sub>Na</sub>) in GtoPdb v.2023.1","authors":"Richard Aldrich, K. George Chandy, Stephan Grissmer, George A. Gutman, Leonard K. Kaczmarek, Aguan D. Wei, Heike Wulff","doi":"10.2218/gtopdb/f69/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f69/2023.1","url":null,"abstract":"Calcium- and sodium- activated potassium channels are members of the 6TM family of K channels which comprises the voltage-gated KV subfamilies, including the KCNQ subfamily, the EAG subfamily (which includes hERG channels), the Ca2+-activated Slo subfamily (actually with 6 or 7TM) and the Ca2+- and Na+-activated SK subfamily (nomenclature as agreed by the NC-IUPHAR Subcommittee on Calcium- and sodium-activated potassium channels [126]). As for the 2TM family, the pore-forming a subunits form tetramers and heteromeric channels may be formed within subfamilies (e.g. KV1.1 with KV1.2; KCNQ2 with KCNQ3).","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135018442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phosphodiesterases, 3',5'-cyclic nucleotide (PDEs) in GtoPdb v.2023.1","authors":"Chen Yan","doi":"10.2218/gtopdb/f260/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f260/2023.1","url":null,"abstract":"3',5'-Cyclic nucleotide phosphodiesterases (PDEs, 3',5'-cyclic-nucleotide 5'-nucleotidohydrolase), E.C. 3.1.4.17, catalyse the hydrolysis of a 3',5'-cyclic nucleotide (usually cyclic AMP or cyclic GMP). isobutylmethylxanthine is a nonselective inhibitor with an IC50 value in the millimolar range for all isoforms except PDE 8A, 8B and 9A. A 2',3'-cyclic nucleotide 3'-phosphodiesterase (E.C. 3.1.4.37 CNPase) activity is associated with myelin formation in the development of the CNS.","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135018443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elvir Becirovic, Martin Biel, Stefanie Fenske, Verena Hammelmann, Franz Hofmann, U. Benjamin Kaupp
{"title":"Cyclic nucleotide-regulated channels (CNG) in GtoPdb v.2023.1","authors":"Elvir Becirovic, Martin Biel, Stefanie Fenske, Verena Hammelmann, Franz Hofmann, U. Benjamin Kaupp","doi":"10.2218/gtopdb/f71/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f71/2023.1","url":null,"abstract":"Cyclic nucleotide-gated (CNG) channels are responsible for signalling in the primary sensory cells of the vertebrate visual and olfactory systems. CNG channels are voltage-independent cation channels formed as tetramers. Each subunit has 6TM, with the pore-forming domain between TM5 and TM6. CNG channels were first found in rod photoreceptors [83, 120], where light signals through rhodopsin and transducin to stimulate phosphodiesterase and reduce intracellular cyclic GMP level. This results in a closure of CNG channels and a reduced ‘dark current’. Similar channels were found in the cilia of olfactory neurons [181] and the pineal gland [71]. The cyclic nucleotides bind to a domain in the C terminus of the subunit protein: other channels directly binding cyclic nucleotides include hyperolarisation-activated, cyclic nucleotide-gated channels (HCN), ether-a-go-go and certain plant potassium channels.The HCN channels are cation channels that are activated by hyperpolarisation at voltages negative to ~-50 mV. The cyclic nucleotides cyclic AMP and cyclic GMP directly bind to the cyclic nucleotide-binding domain of HCN channels and shift their activation curves to more positive voltages, thereby enhancing channel activity. HCN channels underlie pacemaker currents found in many excitable cells including cardiac cells and neurons [65, 192]. In native cells, these currents have a variety of names, such as Ih, Iq and If. The four known HCN channels have six transmembrane domains and form tetramers. It is believed that the channels can form heteromers with each other, as has been shown for HCN1 and HCN4 [2]. High resolution structural studies of CNG and HCN channels has provided insight into the the gating processes of these channels [139, 146, 140]. A standardised nomenclature for CNG and HCN channels has been proposed by the NC-IUPHAR Subcommittee on voltage-gated ion channels [108].","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135018446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alessandro Bisello, Michael Chorev, Peter A. Friedman, Tom Gardella, Rebecca Hills, Harald Jueppner, T. John Martin, Robert A. Nissenson, John Thomas Potts, Jr., Caroline Silve, Ted B. Usdin, Jean-Pierre Vilardaga
{"title":"Parathyroid hormone receptors in GtoPdb v.2023.1","authors":"Alessandro Bisello, Michael Chorev, Peter A. Friedman, Tom Gardella, Rebecca Hills, Harald Jueppner, T. John Martin, Robert A. Nissenson, John Thomas Potts, Jr., Caroline Silve, Ted B. Usdin, Jean-Pierre Vilardaga","doi":"10.2218/gtopdb/f53/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f53/2023.1","url":null,"abstract":"The parathyroid hormone receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Parathyroid Hormone Receptors [50]) are class B G protein-coupled receptors. The parathyroid hormone (PTH)/parathyroid hormone-related peptide (PTHrP) receptor (PTH1 receptor) is activated by precursor-derived peptides: PTH (84 amino acids), and PTHrP (141 amino-acids) and related peptides (PTH-(1-34), PTHrP-(1-36)). The parathyroid hormone 2 receptor (PTH2 receptor) is activated by the precursor-derived peptide TIP39 (39 amino acids). [125I]PTH may be used to label both PTH1 and PTH2 receptors. The structure of a long-active PTH analogue (LA-PTH, an hybrid of PTH-(1-13) and PTHrP-(14-36)) bound to the PTH1 receptor-Gs complex has been resolved by cryo-electron microscopy [148]. Another structure of a PTH-(1-34) analog bound to a thermostabilized inactive PTH1 receptor has been obtained with X-ray crytallography [35].","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135018450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Heitman, A. IJzerman, C. McArdle, Adam J Pawson
{"title":"Gonadotrophin-releasing hormone receptors in GtoPdb v.2023.1","authors":"L. Heitman, A. IJzerman, C. McArdle, Adam J Pawson","doi":"10.2218/gtopdb/f31/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f31/2023.1","url":null,"abstract":"GnRH1 and GnRH2 receptors (provisonal nomenclature [39], also called Type I and Type II GnRH receptor, respectively [85]) have been cloned from numerous species, most of which express two or three types of GnRH receptor [85, 84, 114]. GnRH I (p-Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) is a hypothalamic decapeptide also known as luteinizing hormone-releasing hormone, gonadoliberin, luliberin, gonadorelin or simply as GnRH. It is a member of a family of similar peptides found in many species [85, 84, 114] including GnRH II (pGlu-His-Trp-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH2 (which is also known as chicken GnRH-II). Receptors for three forms of GnRH exist in some species but only GnRH I and GnRH II and their cognate receptors have been found in mammals [85, 84, 114]. GnRH1 receptors are expressed by pituitary gonadotrophs, where they mediate the effects of GnRH on gonadotropin hormone synthesis and secretion that underpin central control of mammalian reproduction. GnRH analogues are used in assisted reproduction and to treat steroid hormone-dependent conditions [58]. Notably, agonists cause desensitization of GnRH-stimulated gonadotropin secretion and the consequent reduction in circulating sex steroids is exploited to treat hormone-dependent cancers of the breast, ovary and prostate [58]. GnRH1 receptors are selectively activated by GnRH I and all lack the COOH-terminal tails found in other GPCRs. GnRH2 receptors do have COOH-terminal tails and (where tested) are selective for GnRH II over GnRH I. GnRH2 receptors are expressed by some primates but not by humans [88]. Phylogenetic classifications divide GnRH receptors into three [85] or five groups [130] and highlight examples of gene loss through evolution, with humans retaining only one ancient gene. The structure of the GnRH1 receptor in complex with elagolix has been elucidated [133].","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80331581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Costagliola, J. Dias, M. Gershengorn, Adam J. Pawson, D. Segaloff, A. Themmen, G. Vassart
{"title":"Glycoprotein hormone receptors in GtoPdb v.2023.1","authors":"S. Costagliola, J. Dias, M. Gershengorn, Adam J. Pawson, D. Segaloff, A. Themmen, G. Vassart","doi":"10.2218/gtopdb/f30/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f30/2023.1","url":null,"abstract":"Glycoprotein hormone receptors (provisional nomenclature [47]) are activated by a non-covalent heterodimeric glycoprotein made up of a common α chain (glycoprotein hormone common alpha subunit CGA, P01215), with a unique β chain that confers the biological specificity to FSH, LH, hCG or TSH. There is binding cross-reactivity across the endogenous agonists for each of the glycoprotein hormone receptors. The deglycosylated hormones appear to exhibit reduced efficacy at these receptors [122, 31].","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"16 6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88803894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SLC22 family of organic cation and anion transporters in GtoPdb v.2023.1","authors":"B. Hagenbuch","doi":"10.2218/gtopdb/f146/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f146/2023.1","url":null,"abstract":"The SLC22 family of transporters is mostly composed of non-selective transporters, which are expressed highly in liver, kidney and intestine, playing a major role in drug disposition. The family may be divided into three subfamilies based on the nature of the substrate transported: organic cations (OCTs), organic anions (OATs) and organic zwiterrion/cations (OCTN). Membrane topology is predicted to contain 12 TM domains with intracellular termini, and an extended extracellular loop at TM 1/2.","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79205446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"1I. Vitamin D receptor-like receptors in GtoPdb v.2023.1","authors":"S. Christakos","doi":"10.2218/gtopdb/f90/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f90/2023.1","url":null,"abstract":"Vitamin D (VDR), Pregnane X (PXR) and Constitutive Androstane (CAR) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [50, 1]) are members of the NR1I family of nuclear receptors, which form heterodimers with members of the retinoid X receptor family. PXR and CAR are activated by a range of exogenous compounds, with no established endogenous physiological agonists, although high concentrations of bile acids and bile pigments activate PXR and CAR [50].","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88116707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ABCG subfamily in GtoPdb v.2023.1","authors":"I. Kerr","doi":"10.2218/gtopdb/f155/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f155/2023.1","url":null,"abstract":"This family of 'half-transporters' act as homo- or heterodimers; particularly ABCG5 and ABCG8 are thought to be obligate heterodimers. The ABCG5/ABCG heterodimer sterol transporter structure has been determined [6], suggesting an extensive intracellular nucleotide binding domain linked to the transmembrane domains by a fold in the primary sequence. The functional ABCG2 transporter appears to be a homodimer with structural similarities to the ABCG5/ABCG8 heterodimer [10, 1].","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84385584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}