{"title":"STATs signaling pathways in dendritic cells: As potential therapeutic targets?","authors":"Sepideh Sohrabi, Javad Masoumi, Bahar Naseri, Farid Ghorbaninezhad, Shiva Alipour, Tohid Kazemi, Javad Ahmadian Heris, Leili Aghebati Maleki, Pedram Basirjafar, Raziyeh Zandvakili, Mohammad Amin Doustvandi, Behzad Baradaran","doi":"10.1080/08830185.2023.2274576","DOIUrl":"10.1080/08830185.2023.2274576","url":null,"abstract":"<p><p>Dendritic cells (DCs) are professional antigen-presenting cells (APCs), including heterogenous populations with phenotypic and functional diversity that coordinate bridging innate and adaptive immunity. Signal transducer and activator of transcriptions (STAT) factors as key proteins in cytokine signaling were shown to play distinct roles in the maturation and antigen presentation of DCs and play a pivotal role in modulating immune responses mediated by DCs such as differentiation of T cells to T helper (Th) 1, Th2 or regulatory T (Treg) cells. This review sheds light on the importance of STAT transcription factors' signaling pathways in different subtypes of DCs and highlights their targeting potential usages for improving DC-based immunotherapies for patients who suffer from cancer or diverse autoimmune conditions according to the type of the STAT transcription factor and its specific activating or inhibitory agent.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54229078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RNA methylation: A potential therapeutic target in autoimmune disease.","authors":"Lele Li, Xiaoping Xia, Tian Yang, Yuchao Sun, Xueke Liu, Wei Xu, Mei Lu, Dawei Cui, Yingping Wu","doi":"10.1080/08830185.2023.2280544","DOIUrl":"10.1080/08830185.2023.2280544","url":null,"abstract":"<p><p>Autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD) are caused by the body's immune response to autoantigens. The pathogenesis of autoimmune diseases is unclear. Numerous studies have demonstrated that RNA methylation plays a key role in disease progression, which is essential for post-transcriptional regulation and has gradually become a broad regulatory mechanism that controls gene expression in various physiological processes, including RNA nuclear output, translation, splicing, and noncoding RNA processing. Here, we outline the writers, erasers, and readers of RNA methylation, including N6-methyladenosine (m<sup>6</sup>A), 2'-O-methylation (Nm), 2'-O-dimethyladenosine (m<sup>6</sup>Am), N1-methyladenosine (m<sup>1</sup>A), 5-methylcytidine (m<sup>5</sup>C) and N7-methylguanosine (m<sup>7</sup>G). As the role of RNA methylation modifications in the immune system and diseases is explained, the potential treatment value of these modifications has also been demonstrated. This review reports the relationship between RNA methylation and autoimmune diseases, highlighting the need for future research into the therapeutic potential of RNA modifications.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136397400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ying Ye, Hao Cheng, Yan Wang, Yan Sun, Li-Dong Zhang, Jun Tang
{"title":"Macrophage: A key player in neuropathic pain.","authors":"Ying Ye, Hao Cheng, Yan Wang, Yan Sun, Li-Dong Zhang, Jun Tang","doi":"10.1080/08830185.2024.2344170","DOIUrl":"https://doi.org/10.1080/08830185.2024.2344170","url":null,"abstract":"Research on the relationship between macrophages and neuropathic pain has flourished in the past two decades. It has long been believed that macrophages are strong immune effector cells that play well-established roles in tissue homeostasis and lesions, such as promoting the initiation and progression of tissue injury and improving wound healing and tissue remodeling in a variety of pathogenesis-related diseases. They are also heterogeneous and versatile cells that can switch phenotypically/functionally in response to the micro-environment signals. Apart from microglia (resident macrophages of both the spinal cord and brain), which are required for the neuropathic pain processing of the CNS, neuropathic pain signals in PNS are influenced by the interaction of tissue-resident macrophages and BM infiltrating macrophages with primary afferent neurons. And the current review looks at new evidence that suggests sexual dimorphism in neuropathic pain are caused by variations in the immune system, notably macrophages, rather than the neurological system.","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140655196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cerebral malaria pathogenesis: Dissecting the role of CD4+ and CD8+ T-cells as major effectors in disease pathology","authors":"Indu Sharma, Poonam Kataria, Jyoti Das","doi":"10.1080/08830185.2024.2336539","DOIUrl":"https://doi.org/10.1080/08830185.2024.2336539","url":null,"abstract":"Cerebral malaria (CM) is a severe complication of Plasmodium falciparum (P. falciparum) infection, with complex pathogenesis involving multiple factors, including the host’s immunological response....","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140597022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The emerging role of T helper 9 (Th9) cells in immunopathophysiology: A comprehensive review of their effects and responsiveness in various disease states.","authors":"Manoj Khokhar, Purvi Purohit","doi":"10.1080/08830185.2024.2364586","DOIUrl":"10.1080/08830185.2024.2364586","url":null,"abstract":"<p><p>Th9 cells, a subset of T-helper cells producing interleukin-9 (IL-9), play a vital role in the adaptive immune response and have diverse effects in different diseases. Regulated by transcription factors like PU.1 and IRF4, and cytokines such as IL-4 and TGF-β, Th9 cells drive tissue inflammation. This review focuses on their emerging role in immunopathophysiology. Th9 cells exhibit immune-mediated cancer cell destruction, showing promise in glioma and cervical cancer treatment. However, their role in breast and lung cancer is intricate, requiring a deeper understanding of pro- and anti-tumor aspects. Th9 cells, along with IL-9, foster T cell and immune cell proliferation, contributing to autoimmune disorders. They are implicated in psoriasis, atopic dermatitis, and infections. In allergic reactions and asthma, Th9 cells fuel pro-inflammatory responses. Targeting Foxo1 may regulate innate and adaptive immune responses, alleviating disease symptoms. This comprehensive review outlines Th9 cells' evolving immunopathophysiological role, emphasizing the necessity for further research to grasp their effects and potential therapeutic applications across diseases.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"STAT4 and STAT6, their role in cellular and humoral immunity and in diverse human diseases.","authors":"Manlio Tolomeo, Antonio Cascio","doi":"10.1080/08830185.2024.2395274","DOIUrl":"10.1080/08830185.2024.2395274","url":null,"abstract":"<p><p>Signal transducer and activator of transcription (STAT) 4 and STAT6 play a crucial role in immune cells by transducing signals from specific cytokine receptors, and inducing transcription of genes involved in cell-mediated and humoral immunity. These two different defense mechanisms against pathogens are regulated by two specific CD4+ T helper (Th) cells known as Th1 and Th2 cells. Many studies have shown that several diseases including cancer, inflammatory, autoimmune and allergic diseases are associated with a Th1/Th2 imbalance caused by increased or decreased expression/activity of STAT4 or STAT6 often due to genetic and epigenetic aberrances. An altered expression of STAT4 has been observed in different tumors and autoimmune diseases, while a dysregulation of STAT6 signaling pathway is frequently observed in allergic conditions, such as atopic dermatitis, allergic asthma, food allergy, and tumors such as Hodgkin and non-Hodgkin lymphomas. Recently, dysregulations of STAT4 and STAT6 expression have been observed in SARS-CoV2 and monkeypox infections, which are still public health emergencies in many countries. SARS-CoV-2 can induce an imbalance in Th1 and Th2 responses with a predominant activation of STAT6 in the cytosol and nuclei of pneumocytes that drives Th2 polarization and cytokine storm. In monkeypox infection the virus can promote an immune evasion by inducing a Th2 response that in turn inhibits the Th1 response essential for virus elimination. Furthermore, genetic variations of STAT4 that are associated with an increased risk of developing systemic lupus erythematosus seem to play a role in defense against SARS-CoV-2 infection.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142072800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Orchestration of immune response by innate lymphoid cell subtype 2 at various tumor microenvironment, a suitable target for cancer immunotherapy.","authors":"Rajdeep Roy, Tanmoy Das, Nabendu Biswas","doi":"10.1080/08830185.2023.2247021","DOIUrl":"10.1080/08830185.2023.2247021","url":null,"abstract":"<p><p>Innate lymphoid cells are a mixed population of cells and critical regulators of our innate immune system. According to recent scientific literature, tissue resident innate lymphoid cell subtype 2 has been recognized as an important player of type 2 inflammatory responses, involved in different human malignancies like pancreatic, lung, acute myeloid leukemia, gastrointestinal tract cancer, etc. The current reports have revealed that, among the three main ILC sub types, subtype 2 (ILC 2), as the key regulator of initiating the type 2 inflammatory responses at the tumor microenvironment (TME). This activation of ILC-2 is a very important step for the specific downstream functioning of ILC-2. Priming of ILC-2 with different chemokines involves different cytokine secretion from the activated ILC-2 like IL-4, IL-5, IL-13, IL-9 which induce type 2 inflammatory responses involved in the complex interaction with other immune cells like NK cell, Cytotoxic T cell, MDSC and T<sub>reg</sub> cell. At the initial stage, ILC-2 activation through IL-33 may induce the anti-tumorigenic effect mediated by ILC-2/eosinophil axis. However, it is also evident that PDG2 (Prostaglandin D2)-mediated activation of ILC-2 induces the ILC-2/MDSC immune suppressive pro-tumorigenic niche at the TME. Here, in this review, we have summarized the function of ILC-2 on cancer immunity based on recent scientific work which indicates ILC-2 plays a dual role and orchestrates the immune responses toward type 2 immunity in different cancer settings.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10031627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cholesterol: A friend to viruses.","authors":"Yingchun Wang, Lifen Gao","doi":"10.1080/08830185.2024.2314577","DOIUrl":"10.1080/08830185.2024.2314577","url":null,"abstract":"<p><p>Cholesterol is a key life-sustaining molecule which regulates membrane fluidity and serves as a signaling mediator. Cholesterol homeostasis is closely related to various pathological conditions including tumor, obesity, atherosclerosis, Alzheimer's disease and viral infection. Viral infection disrupts host cholesterol homeostasis, facilitating their own survival. Meanwhile, the host cells strive to reduce cholesterol accessibility to limit viral infection. This review focuses on the regulation of cholesterol metabolism and the role of cholesterol in viral infection, specifically providing an overview of cholesterol as a friend to promote viral entry, replication, assembly, release and immune evasion, which might inspire valuable thinking for pathogenesis and intervention of viral infection.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139899864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Natural and genetically-modified animal models to investigate pulmonary and extrapulmonary manifestations of COVID-19.","authors":"Shikha Tiwari, Garima Goel, Ashok Kumar","doi":"10.1080/08830185.2022.2089666","DOIUrl":"10.1080/08830185.2022.2089666","url":null,"abstract":"<p><p>Coronavirus disease-19 (COVID-19), a pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), is a primarily respiratory tract disease. Suitable animal models for COVID-19 are required to study various aspects of pathogenesis, drug discovery, effective and safe vaccine development. Several laboratory animals including, non-human primates, hamsters, ferrets, transgenic mice, and zebrafish, have been used and proven their significance experimentally. Currently available animal models of SARS-CoV-2 can be broadly classified into two categories 1) natural animal models 2) genetically-modified that exhibit different degrees of susceptibility of SARS-CoV-2, tissue damage in respiratory and other organ systems. Not all the available animal models mimic COVID-19-like phenotype completely. Therefore, understanding various aspects of COVID-19 requires different animal models. In this review article, we provide an update on the immune response and clinical manifestations observed in naturally occurring and genetically-modified animals of COVID-19. We then review the transmission, viral replication, lung pathology, immunological aspects, and extrapulmonary phenotypes observed in various animal models. In the end, we put forth our perspective on the anticipated uses, disadvantages, and limitations of each type of animal model.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40399161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemokines: A key driver for inflammation in protozoan infection.","authors":"Rubika Chauhan, Mrinalini Tiwari, Amrendra Chaudhary, Reva Sharan Thakur, Veena Pande, Jyoti Das","doi":"10.1080/08830185.2023.2281566","DOIUrl":"10.1080/08830185.2023.2281566","url":null,"abstract":"<p><p>Chemokines belong to the group of small proteins within the cytokine family having strong chemo-attractant properties. In most cases, the strong immuno-modulatory role of chemokines is crucial for generating the immune response against pathogens in various protozoan diseases. In this review, we have given a brief update on the classification, characterization, homeostasis, transcellular migration, and immuno-modulatory role of chemokines. Here we will evaluate the potential role of chemokines and their regulation in various protozoan diseases. There is a significant direct relationship between parasitic infection and the recruitment of effector cells of the immune response. Chemokines play an indispensable role in mediating several defense mechanisms against infection, such as leukocyte recruitment and the generation of innate and cell-mediated immunity that aids in controlling/eliminating the pathogen. This process is controlled by the chemotactic movement of chemokines induced as a primary host immune response. We have also addressed that chemokine expressions during infection are time-dependent and orchestrated in a systematic pattern that ultimately assists in generating a protective immune response. Taken together, this review provides a systematic understanding of the complexity of chemokines profiles during protozoan disease conditions and the rationale of targeting chemokines for the development of therapeutic strategies.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138046886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}