ChemElectroChemPub Date : 2025-01-05DOI: 10.1002/celc.202400582
Gelines Moreno-Fernández, Miguel Granados-Moreno, Daniel Carriazo
{"title":"High Performance Sodium-Ion Hybrid Capacitor Based on Graphene-Tin Pyrophosphate Nanocomposite Anode","authors":"Gelines Moreno-Fernández, Miguel Granados-Moreno, Daniel Carriazo","doi":"10.1002/celc.202400582","DOIUrl":"https://doi.org/10.1002/celc.202400582","url":null,"abstract":"<p>The development of alternative energy storage technologies such as sodium-ion hybrid capacitors, which do not rely on critical raw materials such as cobalt or nickel, for the replacement of conventional lithium-ion batteries for some niche applications, is extremely important to successfully achieve a sustainable development in our planet. In this work, we introduce a novel sodium-ion hybrid capacitor system formed by the combination of an optimized nanostructured composite material containing reduced graphene oxide and tin pyrophosphate as negative electrode, and a high specific surface area graphene-carbon composite as positive electrode. The electrochemical performance of each material has been individually evaluated using NaPF<sub>6</sub> in EC/DMC as electrolyte, showing impressive specific capacity values above 100 mAh g<sup>−1</sup> at 2 A g<sup>−1</sup>, for both faradaic and capacitive-type electrodes. The integration of the electrodes in an optimized full cell with anode-to-cathode mass balance of 1.5 : 1, enabled stable full cells that can provide energy densities of almost 60 Wh kg<sup>−1</sup> at 3,000 W kg<sup>−1</sup>, showcasing the potential of these type of materials in the design of next generation energy storage systems.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 4","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400582","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemElectroChemPub Date : 2025-01-02DOI: 10.1002/celc.202580101
Dr. Jiaoyi Ning
{"title":"Front Cover: Multi-Electron Transfer Organic Cathode for High-Performance Aqueous Zinc-Ion Batteries (ChemElectroChem 1/2025)","authors":"Dr. Jiaoyi Ning","doi":"10.1002/celc.202580101","DOIUrl":"https://doi.org/10.1002/celc.202580101","url":null,"abstract":"<p><b>The front cover picture</b> shows the multi-electron transfer process of organic materials in aqueous zinc-ion batteries (AZIBs). Overlaid cyclic voltammetry curves in the battery demonstrate the multi-electron redox reactions, symbolizing the multi-electron transfer mechanism that enhances energy storage capacity. Cover design by Bo Chen and Jiaoyi Ning. Further details can be found in the Concept article by Jiaoyi Ning (DOI: 10.1002/celc.202400540).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202580101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemElectroChemPub Date : 2024-12-27DOI: 10.1002/celc.202400551
Viet Dung Trinh, Le Thanh Nguyen Huynh, Hoang Vinh Tran, Nguyen Thi Tuyet Mai, Dang Chinh Huynh
{"title":"An Investigation on Effect of Organic Additives for Stable Performance Vanadium – Cerium Redox Flow Batteries","authors":"Viet Dung Trinh, Le Thanh Nguyen Huynh, Hoang Vinh Tran, Nguyen Thi Tuyet Mai, Dang Chinh Huynh","doi":"10.1002/celc.202400551","DOIUrl":"https://doi.org/10.1002/celc.202400551","url":null,"abstract":"<p>In an era where renewable energy resources are pivotal yet plagued by variability, vanadium-cerium (V-Ce) redox flow batteries (RFBs) present a sophisticated solution to energy storage and grid stability. This study focuses into the electrochemical integration of cerium with vanadium to enhance traditional redox flow batteries′ energy density and cost-effectiveness. Through an innovative design that allows scalability and addresses the challenges of the lower energy density inherent in vanadium RFBs, V-Ce RFBs demonstrate the potential for more compact and efficient energy storage systems. In this work, we provide the open-source design mono cell for RFBs research. Herein, the research spotlights the electrochemical characterization of Ce-based electrolytes, employing mixed acid electrolytes to improve solubility. For improving the electrochemical performance of the V-Ce RFBs including the diffusion coefficients and electron transfer rates, L–Leucine and L–Lysine have been used as organic additives. Obtained results have revealed that these additives not only influence the electrochemical stability and efficiency but also significantly affect to the charge-discharge properties of the V-Ce RFBs, in which, the L-leucine showing superior performance over L-lysine. These findings propose a new way for optimizing the stability of V-Ce RFBs for large-scale energy storage regarding efficiency, safety, and environmental impact.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 3","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400551","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143119603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemElectroChemPub Date : 2024-12-23DOI: 10.1002/celc.202400600
Qinghua Yi, Hao Wang, Jong-Min Lee
{"title":"BiVO4-Based Photoelectrochemical Water Splitting","authors":"Qinghua Yi, Hao Wang, Jong-Min Lee","doi":"10.1002/celc.202400600","DOIUrl":"https://doi.org/10.1002/celc.202400600","url":null,"abstract":"<p>Photoelectrochemical water splitting is one of the most promising and appealing strategies for converting sunlight into sustainable hydrogen energy and has received increasing attention. Among the potential photocatalysts, BiVO<sub>4</sub> has attracted particular attention as a photoanode material because of its appropriate bandgap (2.4 eV) and favorable band-edge position. Moreover, its carrier mobility and hole-diffusion length are modest, and the photocurrent density is below the theoretical expectation (7.5 mA cm<sup>−2</sup>). Recently, diverse strategies have been developed to improve the performance of BiVO<sub>4</sub>-based photoanodes with rapid progress. In this article, engineering strategies including facet tailoring, intrinsic and extrinsic doping, surface modification, are summarized, and remaining challenges and perspective for the future research are provided.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 4","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400600","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemElectroChemPub Date : 2024-12-20DOI: 10.1002/celc.202400687
Dr. Rosalba A. Rincón
{"title":"Charging Forward!","authors":"Dr. Rosalba A. Rincón","doi":"10.1002/celc.202400687","DOIUrl":"https://doi.org/10.1002/celc.202400687","url":null,"abstract":"<p>In this Editorial, we look back at how we celebrated the 10<sup>th</sup> anniversary of <i>ChemElectroChem</i> in 2024.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400687","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143117421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemElectroChemPub Date : 2024-12-20DOI: 10.1002/celc.202400459
PhD. Eng. Karolina Cysewska
{"title":"Room vs. Body Temperature to Evaluate Electrical Interface Parameters of State-Of-The-Art PEDOT : PSS-Based Electrodes","authors":"PhD. Eng. Karolina Cysewska","doi":"10.1002/celc.202400459","DOIUrl":"https://doi.org/10.1002/celc.202400459","url":null,"abstract":"<p>In this work, the effect of the simulated body fluid temperature on the electrical interface parameters of the state-of-the-art PEDOT-PSS electrode was studied. PEDOT-PSS was synthesized by electrodeposition on graphite and gold-coated-graphite electrodes. All electrochemical measurements were performed in phosphate-buffered saline aqueous solution (pH 7.4) at room temperature (25 °C) and body temperature (37 °C). The results of the work confirmed that the modification of the carbon or metallic electrode with conducting polymer PEDOT : PSS significantly reduced the interfacial impedance and improved charge storage capacity and current injection limit due to its high electroactive surface area, roughness and porosity compared to the bare substrates. The work showed that solution temperature is a critical factor that can influence the electrical interface parameters of electrodes for neural stimulation. Understanding and controlling these temperature-dependent effects are essential for ensuring the reliability, safety, and efficacy of neural stimulation applications in both research and clinical settings.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 2","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400459","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143117422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemElectroChemPub Date : 2024-12-20DOI: 10.1002/celc.202400530
Frank N. Crespilho, Carlos M. Costa, Senentxu Lanceros-Méndez
{"title":"Sustainable Battery Biomaterials","authors":"Frank N. Crespilho, Carlos M. Costa, Senentxu Lanceros-Méndez","doi":"10.1002/celc.202400530","DOIUrl":"https://doi.org/10.1002/celc.202400530","url":null,"abstract":"<p>The future of energy storage demands not just efficiency but sustainability. Current battery technologies, relying on finite resources materials, face critical challenges related to environmental impact and safety. This Perspective explores the transformative potential of biomaterials – specifically biopolymers, bioinspired redox molecules, and bio-derived gels – in contributing to sustainable energy storage. Highlighting recent advancements, we focus on the integration of natural and bioinspired materials as binders, electrodes, and electrolytes. These innovations present viable alternatives to traditional, non-biodegradable battery components while opening new frontiers in 3D printing, bio-based thick electrodes, and solid-state electrolytes. Despite challenges such as scalability and long-term stability, biomaterials hold the key to reshaping the landscape of energy storage technologies, offering a path toward a greener, safer, and more efficient future.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 3","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400530","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143117420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Porous Copper-PTFE Hybrid Electrocatalyst for CO2 Reduction with High C2+ Selectivity","authors":"Yoshitomo Seki, Mamiko Nakabayashi, Masakazu Sugiyama, Tsutomu Minegishi","doi":"10.1002/celc.202400536","DOIUrl":"https://doi.org/10.1002/celc.202400536","url":null,"abstract":"<p>The electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) to ethylene (C<sub>2</sub>H<sub>4</sub>) is one of the most promising approaches to obtaining value-added C<sub>2+</sub> hydrocarbons without net CO<sub>2</sub> emission. However, issues still to be solved for practical use include the improvement of Faradaic efficiency (FE) towards C<sub>2</sub>H<sub>4</sub>, electrode durability, and suppression of competitive hydrogen evolution reaction (HER). In this work, hydrophobic polymer, polytetrafluoroethylene (PTFE), added porous Cu electrocatalysts were firstly and successfully prepared on gas diffusion layer, and the significant enhancement of FEs toward C<sub>2+</sub> products, especially C<sub>2</sub>H<sub>4</sub>, and durability were found. CO<sub>2</sub>RR test in flow cell as a gas diffusion electrode (GDE) revealed that the GDE with porous Cu electrocatalysts showed higher FE(C<sub>2</sub>H<sub>4</sub>) to FE(CO) while significant HER and instability issues remained. Further modification by PTFE to form porous Cu-PTFE hybrid structure significantly decreased FE(H<sub>2</sub>) to 11.6 % in minimum, enhanced FE(C<sub>2</sub>H<sub>4</sub>) to 51.1 % in maximum and raised durable CO<sub>2</sub>RR for over 24 hours under current density of −300 mA cm<sup>−2</sup>. PTFE addition should form a secured pathway for gas species, including both reactant and product which was beneficial for durable and selective C<sub>2</sub>H<sub>4</sub> production. This work highlights chemical engineering aspects of CO<sub>2</sub>RR including the transportation of reactants and products.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 2","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400536","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemElectroChemPub Date : 2024-12-16DOI: 10.1002/celc.202482401
{"title":"Front Cover:(ChemElectroChem 24/2024)","authors":"","doi":"10.1002/celc.202482401","DOIUrl":"https://doi.org/10.1002/celc.202482401","url":null,"abstract":"<p>The Front Cover shows how the most typical elements present in electrochemistry work together to power and light up the 10th anniversary sign celebrating the last decade of excellent research published in ChemElectroChem. Cover art by Tomáš Belloň (IOCB Prague).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 24","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202482401","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrochemical CO2 Reduction: Commercial Innovations and Prospects","authors":"Swapnil Varhade, Avni Guruji, Chandani Singh, Giancarlo Cicero, Max García-Melchor, Joost Helsen, Deepak Pant","doi":"10.1002/celc.202400512","DOIUrl":"https://doi.org/10.1002/celc.202400512","url":null,"abstract":"<p>Sustainability is an imperative requirement in this era, with electrocatalytic power into fuels technologies emerging as a significant route toward sustainable chemistry. One of the focus areas within the chemical industry is capture of carbon dioxide (CO<sub>2</sub>) and its electrochemical reduction (eCO<sub>2</sub>RR) into economically viable commodities through the utilization of renewable sources. Despite some specific eCO<sub>2</sub>RR technologies being poised for market introduction, the development of a comprehensive technology for eCO<sub>2</sub>RR remains a challenge. While certain technologies targeting specific eCO<sub>2</sub>RR products are on the verge of deployment, substantial efforts are still necessary to transition and establish presence in the market over conventional technologies. This review highlights recent technological advancements, fundamental studies, and the persisting challenges from an industrial perspective. We take a deep dive into the research methodologies, strategies, challenges, and advancements in the development of applications for eCO<sub>2</sub>RR. Specifically, three eCO<sub>2</sub>RR products – CO, HCOOH, and C<sub>2</sub>H<sub>4</sub> – as promising candidates for implementation are elaborated based on techno-economic considerations. Additionally, the review discusses the industrial blueprint for these products, aiming to streamline their path toward commercialization. The intent is to present the status of eCO<sub>2</sub>RR, offering insights into its potential transformation from a mere laboratory curiosity to a feasible technology for industrial chemical synthesis.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 2","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400512","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143114466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}