Effect of Operating Temperature on Ni–Fe Alloy Nanostructured Electrodes for Alkaline Electrolyzer

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Alberto Affranchi, Roberto Luigi Oliveri, Sonia Longo, Gabriele Miccichè, Sonia Carbone, Francesca Bellomo, Salvatore Geraci, Bernardo Patella, Nadia Moukri, Giuseppe Aiello, Maurizio Cellura, Philippe Mandin, Myeongsub Kim, Rosalinda Inguanta
{"title":"Effect of Operating Temperature on Ni–Fe Alloy Nanostructured Electrodes for Alkaline Electrolyzer","authors":"Alberto Affranchi,&nbsp;Roberto Luigi Oliveri,&nbsp;Sonia Longo,&nbsp;Gabriele Miccichè,&nbsp;Sonia Carbone,&nbsp;Francesca Bellomo,&nbsp;Salvatore Geraci,&nbsp;Bernardo Patella,&nbsp;Nadia Moukri,&nbsp;Giuseppe Aiello,&nbsp;Maurizio Cellura,&nbsp;Philippe Mandin,&nbsp;Myeongsub Kim,&nbsp;Rosalinda Inguanta","doi":"10.1002/celc.202500042","DOIUrl":null,"url":null,"abstract":"<p>Herein, the effect of operating temperature on alkaline electrolytic cells for hydrogen generation using nanostructured electrodes is studied. Nanostructured nickel–iron alloy electrodes are obtained by electrosynthesis in a template. These electrodes are characterized by a nanowire-like structure with a high active surface area and consequently a higher catalytic activity than non-nanostructured materials. The chemical and morphological features of nanostructured electrodes are evaluated by energy-dispersive spectroscopy, X-ray diffraction, and scanning electron microscopy analyses. The electrochemical behavior of the nanostructured electrodes is studied through different tests in alkaline solutions. Tests are performed at different temperatures, 25, 40, and 60 °C, to evaluate the performance in terms of hydrogen and oxygen production and to verify the medium-term stability under galvanostatic conditions. The electrodes demonstrate good stability over time without evident signs of performance decay. The performance of a homemade electrolyzer with nanostructured electrodes is also studied at different temperatures and under industrial operation conditions for 600 h. The environmental impacts through the application of life cycle assessment methodology are also evaluated.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 14","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202500042","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, the effect of operating temperature on alkaline electrolytic cells for hydrogen generation using nanostructured electrodes is studied. Nanostructured nickel–iron alloy electrodes are obtained by electrosynthesis in a template. These electrodes are characterized by a nanowire-like structure with a high active surface area and consequently a higher catalytic activity than non-nanostructured materials. The chemical and morphological features of nanostructured electrodes are evaluated by energy-dispersive spectroscopy, X-ray diffraction, and scanning electron microscopy analyses. The electrochemical behavior of the nanostructured electrodes is studied through different tests in alkaline solutions. Tests are performed at different temperatures, 25, 40, and 60 °C, to evaluate the performance in terms of hydrogen and oxygen production and to verify the medium-term stability under galvanostatic conditions. The electrodes demonstrate good stability over time without evident signs of performance decay. The performance of a homemade electrolyzer with nanostructured electrodes is also studied at different temperatures and under industrial operation conditions for 600 h. The environmental impacts through the application of life cycle assessment methodology are also evaluated.

Abstract Image

工作温度对碱性电解槽用镍铁合金纳米电极的影响
本文研究了工作温度对纳米结构电极制氢碱性电解电池的影响。采用模板电合成的方法制备了纳米镍铁合金电极。这些电极具有纳米线状结构,具有高活性表面积,因此比非纳米结构材料具有更高的催化活性。通过能量色散光谱、x射线衍射和扫描电子显微镜分析来评估纳米结构电极的化学和形态特征。通过不同的实验研究了纳米结构电极在碱性溶液中的电化学行为。在25、40和60°C的不同温度下进行测试,以评估氢气和氧气生产方面的性能,并验证在恒流条件下的中期稳定性。随着时间的推移,电极表现出良好的稳定性,没有明显的性能衰减迹象。研究了自制的纳米结构电极电解槽在不同温度和工业运行条件下600 h的性能。通过应用生命周期评价方法对环境影响进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信