基于共价有机框架的固态电解质:促进锂离子转移的可调节结构

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Shujing Liu, Miao Xu, Xing Chen
{"title":"基于共价有机框架的固态电解质:促进锂离子转移的可调节结构","authors":"Shujing Liu,&nbsp;Miao Xu,&nbsp;Xing Chen","doi":"10.1002/celc.202500163","DOIUrl":null,"url":null,"abstract":"<p>The development of high-performance solid-state electrolytes (SSEs) is critical for advancing next-generation energy storage systems. Traditional liquid electrolytes face safety risks such as flammability, while inorganic and polymeric SSEs suffer from brittleness, low ionic conductivity, and poor thermal stability. Covalent organic frameworks (COFs), with crystalline porosity, tunable functionality, and structural robustness, have emerged as promising candidates for SSEs. This review systematically explores COF-based electrolytes through design strategies including backbone engineering, crystal arrangement optimization, and pore decoration, which aims to provide a roadmap for designing advanced COF electrolytes, emphasizing molecular-level precision and multifunctional integration to overcome existing limitations in energy storage technologies.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500163","citationCount":"0","resultStr":"{\"title\":\"Covalent Organic Framework-Based Solid-State Electrolyte: Regulable Structure Promoting Lithium-Ion Transfer\",\"authors\":\"Shujing Liu,&nbsp;Miao Xu,&nbsp;Xing Chen\",\"doi\":\"10.1002/celc.202500163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of high-performance solid-state electrolytes (SSEs) is critical for advancing next-generation energy storage systems. Traditional liquid electrolytes face safety risks such as flammability, while inorganic and polymeric SSEs suffer from brittleness, low ionic conductivity, and poor thermal stability. Covalent organic frameworks (COFs), with crystalline porosity, tunable functionality, and structural robustness, have emerged as promising candidates for SSEs. This review systematically explores COF-based electrolytes through design strategies including backbone engineering, crystal arrangement optimization, and pore decoration, which aims to provide a roadmap for designing advanced COF electrolytes, emphasizing molecular-level precision and multifunctional integration to overcome existing limitations in energy storage technologies.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500163\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500163\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500163","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

高性能固态电解质(ses)的开发对于推进下一代储能系统至关重要。传统液体电解质存在易燃性等安全隐患,而无机和聚合物sse易碎、离子电导率低、热稳定性差。共价有机框架(COFs)具有晶体孔隙度、可调节的功能和结构坚固性,已成为sse的有希望的候选者。本文从骨架工程、晶体排列优化、孔隙修饰等设计策略对基于COF的电解质进行了系统的探索,旨在为设计先进的COF电解质提供路线图,强调分子水平的精度和多功能集成,以克服现有储能技术的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Covalent Organic Framework-Based Solid-State Electrolyte: Regulable Structure Promoting Lithium-Ion Transfer

Covalent Organic Framework-Based Solid-State Electrolyte: Regulable Structure Promoting Lithium-Ion Transfer

Covalent Organic Framework-Based Solid-State Electrolyte: Regulable Structure Promoting Lithium-Ion Transfer

Covalent Organic Framework-Based Solid-State Electrolyte: Regulable Structure Promoting Lithium-Ion Transfer

Covalent Organic Framework-Based Solid-State Electrolyte: Regulable Structure Promoting Lithium-Ion Transfer

The development of high-performance solid-state electrolytes (SSEs) is critical for advancing next-generation energy storage systems. Traditional liquid electrolytes face safety risks such as flammability, while inorganic and polymeric SSEs suffer from brittleness, low ionic conductivity, and poor thermal stability. Covalent organic frameworks (COFs), with crystalline porosity, tunable functionality, and structural robustness, have emerged as promising candidates for SSEs. This review systematically explores COF-based electrolytes through design strategies including backbone engineering, crystal arrangement optimization, and pore decoration, which aims to provide a roadmap for designing advanced COF electrolytes, emphasizing molecular-level precision and multifunctional integration to overcome existing limitations in energy storage technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信