International Journal of Intelligent Systems最新文献

筛选
英文 中文
Intelligent Sensing and Identification of Spectrum Anomalies With Alpha-Stable Noise
IF 5 2区 计算机科学
International Journal of Intelligent Systems Pub Date : 2025-02-20 DOI: 10.1155/int/5010973
Mingqian Liu, Zhaoxi Wen, Yunfei Chen, Junlin Zhang, Huigui Cheng, Nan Zhao
{"title":"Intelligent Sensing and Identification of Spectrum Anomalies With Alpha-Stable Noise","authors":"Mingqian Liu,&nbsp;Zhaoxi Wen,&nbsp;Yunfei Chen,&nbsp;Junlin Zhang,&nbsp;Huigui Cheng,&nbsp;Nan Zhao","doi":"10.1155/int/5010973","DOIUrl":"https://doi.org/10.1155/int/5010973","url":null,"abstract":"<div>\u0000 <p>As the electromagnetic environment becomes more complex, a significant number of interferences and malfunctions of authorized equipment can result in anomalies in spectrum usage. Utilizing intelligent spectrum technology to sense and identify anomalies in the electromagnetic space is of great significance for the efficient use of the electromagnetic space. In this paper, a method for intelligent sensing and identification of anomalies in spectrum with alpha-stable noise is proposed. First, we use a delayed feedback network (DFN) to suppress alpha-stable noise. Then, we use a long short-term memory (LSTM) autoencoder-based attention mechanism to sense anomaly. Finally, we use the deep forest model to identify abnormal spectrum. Simulation results demonstrate that the proposed method effectively suppresses alpha-stable noise, and it outperforms existing methods in abnormal spectrum sensing and identification.</p>\u0000 </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/5010973","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling and Recognition of Retinal Blood Vessels Tortuosity in ROP Plus Disease: A Hybrid Segmentation–Classification Scheme
IF 5 2区 计算机科学
International Journal of Intelligent Systems Pub Date : 2025-02-20 DOI: 10.1155/int/6688133
Alice Varysova, Jan Kubicek, Marek Penhaker, Martin Augustynek, David Oczka, Kristyna Marsolkova, Juraj Timkovic
{"title":"Modeling and Recognition of Retinal Blood Vessels Tortuosity in ROP Plus Disease: A Hybrid Segmentation–Classification Scheme","authors":"Alice Varysova,&nbsp;Jan Kubicek,&nbsp;Marek Penhaker,&nbsp;Martin Augustynek,&nbsp;David Oczka,&nbsp;Kristyna Marsolkova,&nbsp;Juraj Timkovic","doi":"10.1155/int/6688133","DOIUrl":"https://doi.org/10.1155/int/6688133","url":null,"abstract":"<div>\u0000 <p>Retinopathy of prematurity (ROP) remains a significant cause of childhood blindness despite advancements in neonatal care. Identifying the plus form of ROP, characterized by dilated and tortuous blood vessels, is crucial for timely intervention. This study introduces an intelligent segmentation–classification system for the autonomous detection of retinal blood vessels and the classification of ROP plus form. Utilizing Clarity RetCam 3 images, our system employs morphological image processing and convolutional neural networks (CNNs) for segmentation and classification, respectively. Testing on a dataset of premature infants’ retinal images demonstrates high segmentation accuracy (median = 0.974) and superior classification performance (accuracy = 0.975, sensitivity = 0.950, and specificity = 1). In addition, the system exhibits versatility, with successful segmentation in adult retinal images from public databases. These findings highlight the system’s potential for clinical use in retinal vessel identification, feature extraction, and ROP plus form classification. The proposed system is capable of effectively identifying retinal blood vessels from both alternatives including adult and premature born retinal images with a high accuracy in contrast to related studies. Thus, this system has the potential to be used in clinical practice for retinal blood vessels’ identification, retinal blood vessels’ feature extraction, and ROP plus form classification.</p>\u0000 </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/6688133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Automatic Modulation Classification Technology: Methods, Results, and Prospects 自动调制分类技术的最新进展:方法、结果和前景
IF 5 2区 计算机科学
International Journal of Intelligent Systems Pub Date : 2025-02-18 DOI: 10.1155/int/4067323
Qinghe Zheng, Xinyu Tian, Lisu Yu, Abdussalam Elhanashi, Sergio Saponara
{"title":"Recent Advances in Automatic Modulation Classification Technology: Methods, Results, and Prospects","authors":"Qinghe Zheng,&nbsp;Xinyu Tian,&nbsp;Lisu Yu,&nbsp;Abdussalam Elhanashi,&nbsp;Sergio Saponara","doi":"10.1155/int/4067323","DOIUrl":"https://doi.org/10.1155/int/4067323","url":null,"abstract":"<div>\u0000 <p>As an essential technology for spectrum sensing and dynamic spectrum access, automatic modulation classification (AMC) is a critical step in intelligent wireless communication systems, aiming at automatically recognizing the modulation schemes of received signals. In practice, AMC is challenging due to the influence of communication environment and signal parameters, such as unknown channels, noise, symbol rate, signal length, and sampling frequency. In this survey, we investigated a series of typical AMC methods, including key technology, performance comparisons, advantages, challenges, and future key development directions. According to the methodology and processing flow, AMC methods are divided into three categories: likelihood-based (Lb) methods, feature-based (Fb) methods, and deep learning methods. The technical details of various types of methods are introduced and discussed, such as likelihood distributions, artificial features, classifiers, and network structures. Then, extensive experimental results of state-of-the-art AMC methods on public or simulated datasets are compared and analyzed. Despite the achievements that have been made, there are still limitations of the individual methods, including generalization capability, reasoning efficiency, model complexity, and robustness. In the end, we summarized the severe challenges faced by AMC and key future research directions.</p>\u0000 </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/4067323","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143438971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional Metasurface Design via Physics-Simplified Machine Learning
IF 5 2区 计算机科学
International Journal of Intelligent Systems Pub Date : 2025-02-17 DOI: 10.1155/int/1492020
Ruichao Zhu, Yajuan Han, Yuxiang Jia, Sai Sui, Tonghao Liu, Zuntian Chu, Huiting Sun, Juanna Jiang, Shaobo Qu, Jiafu Wang
{"title":"Multifunctional Metasurface Design via Physics-Simplified Machine Learning","authors":"Ruichao Zhu,&nbsp;Yajuan Han,&nbsp;Yuxiang Jia,&nbsp;Sai Sui,&nbsp;Tonghao Liu,&nbsp;Zuntian Chu,&nbsp;Huiting Sun,&nbsp;Juanna Jiang,&nbsp;Shaobo Qu,&nbsp;Jiafu Wang","doi":"10.1155/int/1492020","DOIUrl":"https://doi.org/10.1155/int/1492020","url":null,"abstract":"<div>\u0000 <p>Metasurface can manipulate electromagnetic (EM) waves flexibly, which provides the basis for functional integration. Recently, the efficient machine-learning-assisted methods have attracted intensive attentions in multifunctional metasurfaces design. However, the conventional machine-learning-assisted metasurfaces design is to fit the internal relationship in the form of black box, which ignores the underlying physical logic, resulting in the increased complexity of machine learning architecture with the parameters increasing. In order to adapt to the multiparameter optimization in multifunctional metasurfaces design, we propose a multiplexing neural network (MNN) based on decoupling at the physical layer to simplify both the structural parameters and the network architecture. The four interacting parameters are simplified into four independently regulated parameters so that the facile design of four functions can be realized only by multiplexing a simple neural network. For verification, four functions of scattering, anomalous reflection, focusing, and hologram are integrated in the same metasurface aperture by MNN. Performances of the metasurface are fully demonstrated by simulation and measurement. Importantly, this work paves the way for the bidirectional simplification of machine learning and metasurface design via physical inspiration, which provides an integrated design method of multifunctional metasurfaces and can be potentially applied to satellite communications and other fields.</p>\u0000 </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/1492020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuron Segmentation via a Frequency and Spatial Domain–Integrated Encoder–Decoder Network
IF 5 2区 计算机科学
International Journal of Intelligent Systems Pub Date : 2025-02-17 DOI: 10.1155/int/7026120
Haixing Song, Xuqing Zeng, Guanglian Li, Rongqing Wu, Simin Liu, Fuyun He
{"title":"Neuron Segmentation via a Frequency and Spatial Domain–Integrated Encoder–Decoder Network","authors":"Haixing Song,&nbsp;Xuqing Zeng,&nbsp;Guanglian Li,&nbsp;Rongqing Wu,&nbsp;Simin Liu,&nbsp;Fuyun He","doi":"10.1155/int/7026120","DOIUrl":"https://doi.org/10.1155/int/7026120","url":null,"abstract":"<div>\u0000 <p>Three-dimensional (3D) segmentation of neurons is a crucial step in the digital reconstruction of neurons and serves as an important foundation for brain science research. In neuron segmentation, the U-Net and its variants have showed promising results. However, due to their primary focus on learning spatial domain features, these methods overlook the abundant global information in the frequency domain. Furthermore, issues such as insufficient processing of contextual features by skip connections and redundant features resulting from simple channel concatenation in the decoder lead to limitations in accurately segmenting neuronal fiber structures. To address these problems, we propose an encoder–decoder segmentation network integrating frequency domain and spatial domain to enhance neuron reconstruction. To simplify the segmentation task, we first divide the neuron images into neuronal cubes. Then, we design 3D FregSNet, which leverages both frequency and spatial domain features to segment the target neurons within these cubes. Then, we introduce a multiscale attention fusion module (MAFM) that utilizes spatial and channel position information to enhance contextual feature representation. In addition, a feature selection module (FSM) is incorporated to adaptively select discriminative features from both the encoder and decoder, increasing the weight on critical neuron locations and significantly improving segmentation performance. Finally, the segmented nerve fiber cubes were assembled into complete neurons and digitally reconstructed using available neuron tracking algorithms. In experiments, we evaluated 3D FregSNet on two challenging 3D neuron image datasets (the BigNeuron dataset and the CWMBS dataset). Compared to other advanced segmentation methods, 3D FregSNet demonstrates more accurate extraction of target neurons in noisy and weakly visible neuronal fiber images, effectively improving the performance of 3D neuron segmentation and reconstruction.</p>\u0000 </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/7026120","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
JPEG Image Steganography With Automatic Embedding Cost Learning
IF 5 2区 计算机科学
International Journal of Intelligent Systems Pub Date : 2025-02-16 DOI: 10.1155/int/5309734
Jianhua Yang, Yi Liao, Fei Shang, Xiangui Kang, Yifang Chen, Yun-Qing Shi
{"title":"JPEG Image Steganography With Automatic Embedding Cost Learning","authors":"Jianhua Yang,&nbsp;Yi Liao,&nbsp;Fei Shang,&nbsp;Xiangui Kang,&nbsp;Yifang Chen,&nbsp;Yun-Qing Shi","doi":"10.1155/int/5309734","DOIUrl":"https://doi.org/10.1155/int/5309734","url":null,"abstract":"<div>\u0000 <p>A great challenge to steganography has arisen with the wide application of steganalysis methods based on convolutional neural networks (CNNs). To this end, embedding cost learning frameworks based on generative adversarial networks (GANs) has been proposed and achieved success for spatial image steganography. However, the application of GAN to JPEG steganography is still in the prototype stage; its antidetectability and training efficiency should be improved. In conventional steganography, research has shown that the side information calculated from the precover can be used to enhance security. However, it is hard to calculate the side information without the spatial domain image. In this work, an embedding cost learning framework for JPEG image steganography via a GAN (JS–GAN) has been proposed, the learned embedding cost can be further adjusted asymmetrically according to the estimated side information (ESI). Experimental results have demonstrated that the proposed method can automatically learn a content-adaptive embedding cost function, and using the ESI properly can effectively improve the security performance. For example, under the attack of a classic steganalyzer GFR with a quality factor of 75 and 0.4 bpnzAC, the proposed JS–GAN can increase the detection error by 2.58% over J-UNIWARD, and the ESI–aided version JS–GAN (ESI) can further increase the security performance by 11.25% over JS–GAN.</p>\u0000 </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/5309734","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryptocurrency Trend Prediction Through Hybrid Deep Transfer Learning
IF 5 2区 计算机科学
International Journal of Intelligent Systems Pub Date : 2025-02-14 DOI: 10.1155/int/4211799
Kia Jahanbin, Mohammad Ali Zare Chahooki
{"title":"Cryptocurrency Trend Prediction Through Hybrid Deep Transfer Learning","authors":"Kia Jahanbin,&nbsp;Mohammad Ali Zare Chahooki","doi":"10.1155/int/4211799","DOIUrl":"https://doi.org/10.1155/int/4211799","url":null,"abstract":"<div>\u0000 <p>The impact of sentiment analysis of comments on social networks such as X (Twitter) on the cryptocurrency market’s behavior has been proven. Also, traditional sentiment analysis and not considering the possible aspects of tweets can cause the deep model to be misleading in predicting the price trend of cryptocurrencies. In this research, a model using transfer learning and the combination of pretrained DistilBERT networks, BiGRU deep neural network, and attention layer is presented to analyze the sentiments based on the aspect of tweets and predict the price trend of eight cryptocurrencies. These tweets are the opinions of 70 cryptocurrency expert influencers. After preprocessing, these tweets are injected into the hybrid model of DistilBERT, BiGRU, and attention layer (HDBA) to extract the aspect and determine the polarity of each aspect. The output of the HDBA model is entered into the combined model of BiGRU and the attention layer (HBA) to predict the price trend of each cryptocurrency in intervals of 1–10 days. The output of the HBA model is the best time interval of the influence of the sentiments of tweets on the price trend of cryptocurrencies. The results show that the HDBA model has improved the performance of the aspect-based sentiment analysis task by an average of 3% in the benchmark datasets. The results of the HBA model also show that this model has been able to predict the best time frame of the impact of sentiments on the behavior of the cryptocurrency market with an average accuracy of 68% and a precision of 73%.</p>\u0000 </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/4211799","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Min–Max Filtering and Exponential Fossa Optimization Algorithm–Based Parallel Convolutional Neural Network for Heart Disease Detection 基于最小-最大过滤和指数窝优化算法的并行卷积神经网络用于心脏病检测
IF 5 2区 计算机科学
International Journal of Intelligent Systems Pub Date : 2025-02-13 DOI: 10.1155/int/1409684
Aathilakshmi S., Balasubramaniam S., Sivakumar T. A., Lakshmi Chetana V.
{"title":"Min–Max Filtering and Exponential Fossa Optimization Algorithm–Based Parallel Convolutional Neural Network for Heart Disease Detection","authors":"Aathilakshmi S.,&nbsp;Balasubramaniam S.,&nbsp;Sivakumar T. A.,&nbsp;Lakshmi Chetana V.","doi":"10.1155/int/1409684","DOIUrl":"https://doi.org/10.1155/int/1409684","url":null,"abstract":"<div>\u0000 <p>Heart disease is a leading cause of death worldwide, affecting millions of lives each year. Earlier and more accurate heart disease detection helps people to save their valuable lives. Many existing systems remain costly and inaccurate. To overcome these issues, an exponential fossa optimization algorithm–based parallel convolutional neural network (EFOA-PCNN) is proposed in this paper for efficient heart disease detection. Initially, the heart disease data are allowed for data normalization, which is performed by min–max normalization. These normalized data are forwarded to the feature selection phase, which is conducted based on chord distance. Finally, heart disease detection is performed using a parallel convolutional neural network (PCNN) that is trained using the EFOA. Here, the EFOA is developed by the combination of the fossa optimization algorithm (FOA) and exponentially weighted moving average (EWMA). The performance of the proposed EFOA-PCNN is analysed by three metrics, such as specificity, sensitivity, and accuracy, and the <i>F</i>1 score that gained superior values of 91.95%, 91.76%, 91.86%, and 92.39%. These results highlight the robustness and reliability of the proposed method in comparison to traditional approaches.</p>\u0000 </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/1409684","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UAV Group Distribution Route Optimization Under Time-Varying Weather Network 时变天气网络下的无人机群分布路线优化
IF 5 2区 计算机科学
International Journal of Intelligent Systems Pub Date : 2025-02-13 DOI: 10.1155/int/8682162
Wanchen Jie, Cheng Pei, Hong Yan, Weitong Lin
{"title":"UAV Group Distribution Route Optimization Under Time-Varying Weather Network","authors":"Wanchen Jie,&nbsp;Cheng Pei,&nbsp;Hong Yan,&nbsp;Weitong Lin","doi":"10.1155/int/8682162","DOIUrl":"https://doi.org/10.1155/int/8682162","url":null,"abstract":"<div>\u0000 <p>The rapid advancement in unmanned aerial vehicle (UAV) technology has marked a transformative shift in various industries, with logistics distribution service being one of the prime sectors reaping the benefits. UAVs offer substantial benefits in speed, cost, and reach, promising to revolutionize logistics, especially in remote areas. On the one hand, they are poised to meet demands for quick and versatile delivery options. On the other hand, their deployment comes with challenges. Weather variabilities such as rainfall, wind speed, and the need for safe take-off intervals can compromise UAV safety and operation. Conventional route optimization often overlooks these dynamic factors, resulting in inefficient or unworkable delivery routes. The repeated time-consuming calculations are caused by repeated trials when making UAV group distribution plans. Recognizing these gaps, this study proposes a data representation to effectively transform the flight flyable area of UAVs into a time-varying network that maintains spatiotemporal connectivity and establishes a mathematical model that represents the complexities of UAV group distribution. Then, a multistage dynamic optimization algorithm specifically tailored for large-scale time-varying network distribution route search is designed to obtain the stable and optimal solution. Subsequent experimental validations on actual case datasets have confirmed the correctness, effectiveness, and adaptability of the algorithm. Benchmarking against traditional CPLEX methods demonstrated that the algorithm not only rivals the best solutions but does so with a 38.8 times increase in computational speed. When pitted against the shortest path Dijkstra and <i>A</i><sup>∗</sup> algorithms, the method consistently outperformed, delivering solutions up to 3.5 times faster in large-scale applications. Moreover, the parameter sensitivity analysis is performed on the algorithm by adjusting the safe flight thresholds of rainfall and wind speed parameters and revealed that the performance of the algorithm has a strong positive correlation with the size of the time-varying network.</p>\u0000 </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/8682162","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-View Deep Learning Model for Accurate Breast Cancer Detection in Mammograms
IF 5 2区 计算机科学
International Journal of Intelligent Systems Pub Date : 2025-02-11 DOI: 10.1155/int/7638868
Dilawar Shah, Mohammad Asmat Ullah Khan, Mohammad Abrar, Muhammad Tahir
{"title":"Dual-View Deep Learning Model for Accurate Breast Cancer Detection in Mammograms","authors":"Dilawar Shah,&nbsp;Mohammad Asmat Ullah Khan,&nbsp;Mohammad Abrar,&nbsp;Muhammad Tahir","doi":"10.1155/int/7638868","DOIUrl":"https://doi.org/10.1155/int/7638868","url":null,"abstract":"<div>\u0000 <p>Breast cancer (BC) remains a major global health problem designed for early diagnosis and requires innovative solutions. Mammography is the most common method of detecting breast abnormalities, but it is difficult to interpret the mammogram due to the complexities of the breast tissue and tumor characteristics. The EfficientViewNet model is designed to overcome false predictions of BC. The model consists of two pathways designed to analyze breast mass characteristics from craniocaudal (CC) and mediolateral oblique (MLO) views. These pathways comprehensively analyze the characteristics of breast tumors from each view. The proposed study possesses several significant strengths, with a high <i>F</i>1 score and recall of 0.99. It shows the robust discriminatory ability of the proposed model compared to other state-of-the-art models. The study also explored the effects of different learning rates on the model’s training dynamics. It showed that the widely used stepwise reduction strategy of the learning rate played a key role in the convergence and performance of the model. It enabled fast early progress and careful fine-tuning of the learning rate as the model nears optimum. The model opens the door to achieving a high level of patient outcomes through a very rigorous methodology.</p>\u0000 </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/7638868","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信