Blind Recognition Algorithm of Convolutional Code via Convolutional Neural Network

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Pan Deng, Tianqi Zhang, Lianghua Wen, Baoze Ma, Ying Wei, Linhao Cui
{"title":"Blind Recognition Algorithm of Convolutional Code via Convolutional Neural Network","authors":"Pan Deng,&nbsp;Tianqi Zhang,&nbsp;Lianghua Wen,&nbsp;Baoze Ma,&nbsp;Ying Wei,&nbsp;Linhao Cui","doi":"10.1155/int/3183819","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Pointing at the vexed question of blind recognition in the convolutional code class, this paper proposes a convolutional code blind identification method via convolutional neural networks (CNNs). First, this algorithm uses the traditional method to generate different convolutional codes, and the feature extraction algorithm adopts the theorem of Euclid’s algorithm. Then, the input signal is loaded to the CNN; next, the feature is extracted by convolutional kernel. Finally, the Softmax activation function is applied to full-connection layer network. After the input signals pass through the above layers, the system classifies the signals. The research results indicate that the presented algorithm has improved the recognition performance of code length and rate. For different convolutional codes with parameters of (5, 7), (15, 17), (23, 35), (53, 75), and (133, 171) and similar convolutional codes with parameters of (3, 1, 6), (3, 1, 7), (2, 1, 7), (2, 1, 6), and (2, 1, 5), the recognition rate of parameter classification can reach 100% at signal-to-noise ratio (SNR) of 3 dB.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/3183819","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/3183819","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Pointing at the vexed question of blind recognition in the convolutional code class, this paper proposes a convolutional code blind identification method via convolutional neural networks (CNNs). First, this algorithm uses the traditional method to generate different convolutional codes, and the feature extraction algorithm adopts the theorem of Euclid’s algorithm. Then, the input signal is loaded to the CNN; next, the feature is extracted by convolutional kernel. Finally, the Softmax activation function is applied to full-connection layer network. After the input signals pass through the above layers, the system classifies the signals. The research results indicate that the presented algorithm has improved the recognition performance of code length and rate. For different convolutional codes with parameters of (5, 7), (15, 17), (23, 35), (53, 75), and (133, 171) and similar convolutional codes with parameters of (3, 1, 6), (3, 1, 7), (2, 1, 7), (2, 1, 6), and (2, 1, 5), the recognition rate of parameter classification can reach 100% at signal-to-noise ratio (SNR) of 3 dB.

Abstract Image

基于卷积神经网络的卷积代码盲识别算法
针对卷积码类中存在的盲识别问题,提出了一种基于卷积神经网络的卷积码盲识别方法。首先,该算法采用传统方法生成不同的卷积码,特征提取算法采用欧几里得算法定理。然后,将输入信号加载到CNN;然后,利用卷积核提取特征。最后,将Softmax激活函数应用到全连接层网络中。输入信号经过以上各层后,系统对信号进行分类。研究结果表明,该算法提高了码长和码率的识别性能。对于参数为(5,7)、(15,17)、(23,35)、(53,75)、(133,171)的不同卷积码,以及参数为(3,1,6)、(3,1,7)、(2,1,7)、(2,1,6)、(2,1,5)的相似卷积码,在信噪比为3db的情况下,参数分类识别率可达到100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信