SCA-Net:季节周期感知模型在时间序列预测中的全局和局部特征

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Min Wang, Hua Wang, Zhen Hua, Fan Zhang
{"title":"SCA-Net:季节周期感知模型在时间序列预测中的全局和局部特征","authors":"Min Wang,&nbsp;Hua Wang,&nbsp;Zhen Hua,&nbsp;Fan Zhang","doi":"10.1155/int/4567807","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Recent advances in transformer architectures have significantly improved performance in time-series forecasting. Despite the excellent performance of attention mechanisms in global modeling, they often overlook local correlations between seasonal cycles. Drawing on the idea of trend-seasonality decomposition, we design a seasonal cycle-aware time-series forecasting model (SCA-Net). This model uses a dual-branch extraction architecture to decompose time series into seasonal and trend components, modeling them based on their intrinsic features, thereby improving prediction accuracy and model interpretability. We propose a method combining global modeling and local feature extraction within seasonal cycles to capture the global view and explore latent features. Specifically, we introduce a frequency-domain attention mechanism for global modeling and use multiscale dilated convolution to capture local correlations within each cycle, ensuring more comprehensive and accurate feature extraction. For simpler trend components, we apply a regression method and merge the output with the seasonal components via residual connections. To improve seasonal cycle identification, we design an adaptive decomposition method that extracts trend components layer by layer, enabling better decomposition and more useful information extraction. Extensive experiments on eight classic datasets show that SCA-Net achieves a performance improvement of 12.1% in multivariate forecasting and 15.6% in univariate forecasting compared to the baseline.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/4567807","citationCount":"0","resultStr":"{\"title\":\"SCA-Net: Seasonal Cycle-Aware Model Emphasizing Global and Local Features for Time Series Forecasting\",\"authors\":\"Min Wang,&nbsp;Hua Wang,&nbsp;Zhen Hua,&nbsp;Fan Zhang\",\"doi\":\"10.1155/int/4567807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Recent advances in transformer architectures have significantly improved performance in time-series forecasting. Despite the excellent performance of attention mechanisms in global modeling, they often overlook local correlations between seasonal cycles. Drawing on the idea of trend-seasonality decomposition, we design a seasonal cycle-aware time-series forecasting model (SCA-Net). This model uses a dual-branch extraction architecture to decompose time series into seasonal and trend components, modeling them based on their intrinsic features, thereby improving prediction accuracy and model interpretability. We propose a method combining global modeling and local feature extraction within seasonal cycles to capture the global view and explore latent features. Specifically, we introduce a frequency-domain attention mechanism for global modeling and use multiscale dilated convolution to capture local correlations within each cycle, ensuring more comprehensive and accurate feature extraction. For simpler trend components, we apply a regression method and merge the output with the seasonal components via residual connections. To improve seasonal cycle identification, we design an adaptive decomposition method that extracts trend components layer by layer, enabling better decomposition and more useful information extraction. Extensive experiments on eight classic datasets show that SCA-Net achieves a performance improvement of 12.1% in multivariate forecasting and 15.6% in univariate forecasting compared to the baseline.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/4567807\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/int/4567807\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/4567807","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

变压器结构的最新进展显著提高了时间序列预测的性能。尽管注意机制在全局建模中表现优异,但它们往往忽略了季节周期之间的局部相关性。利用趋势季节性分解的思想,设计了一个季节周期感知的时间序列预测模型(SCA-Net)。该模型采用双分支提取架构,将时间序列分解为季节分量和趋势分量,根据其内在特征进行建模,从而提高了预测精度和模型的可解释性。我们提出了一种结合全局建模和季节周期局部特征提取的方法来捕捉全局视图和挖掘潜在特征。具体来说,我们为全局建模引入了频域注意机制,并使用多尺度扩展卷积来捕获每个周期内的局部相关性,确保更全面和准确的特征提取。对于简单的趋势分量,我们采用回归方法,并通过残差连接将输出与季节分量合并。为了提高季节周期识别能力,我们设计了一种逐层提取趋势分量的自适应分解方法,使分解效果更好,提取出更多有用的信息。在8个经典数据集上进行的大量实验表明,与基线相比,SCA-Net在多变量预测和单变量预测方面的性能分别提高了12.1%和15.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SCA-Net: Seasonal Cycle-Aware Model Emphasizing Global and Local Features for Time Series Forecasting

SCA-Net: Seasonal Cycle-Aware Model Emphasizing Global and Local Features for Time Series Forecasting

Recent advances in transformer architectures have significantly improved performance in time-series forecasting. Despite the excellent performance of attention mechanisms in global modeling, they often overlook local correlations between seasonal cycles. Drawing on the idea of trend-seasonality decomposition, we design a seasonal cycle-aware time-series forecasting model (SCA-Net). This model uses a dual-branch extraction architecture to decompose time series into seasonal and trend components, modeling them based on their intrinsic features, thereby improving prediction accuracy and model interpretability. We propose a method combining global modeling and local feature extraction within seasonal cycles to capture the global view and explore latent features. Specifically, we introduce a frequency-domain attention mechanism for global modeling and use multiscale dilated convolution to capture local correlations within each cycle, ensuring more comprehensive and accurate feature extraction. For simpler trend components, we apply a regression method and merge the output with the seasonal components via residual connections. To improve seasonal cycle identification, we design an adaptive decomposition method that extracts trend components layer by layer, enabling better decomposition and more useful information extraction. Extensive experiments on eight classic datasets show that SCA-Net achieves a performance improvement of 12.1% in multivariate forecasting and 15.6% in univariate forecasting compared to the baseline.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信