Applying LLMs to Active Learning: Toward Cost-Efficient Cross-Task Text Classification Without Manually Labeled Data

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yejian Zhang, Shingo Takada
{"title":"Applying LLMs to Active Learning: Toward Cost-Efficient Cross-Task Text Classification Without Manually Labeled Data","authors":"Yejian Zhang,&nbsp;Shingo Takada","doi":"10.1155/int/6472544","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Machine learning–based classifiers have been used for text classification, such as sentiment analysis, news classification, and toxic comment classification. However, supervised machine learning models often require large amounts of labeled data for training, and manual annotation is both labor-intensive and requires domain-specific knowledge, leading to relatively high annotation costs. To address this issue, we propose an approach that integrates large language models (LLMs) into an active learning framework, achieving high cross-task text classification performance without the need for any manually labeled data. Furthermore, compared to directly applying GPT for classification tasks, our approach retains over 93% of its classification performance while requiring only approximately 6% of the computational time and monetary cost, effectively balancing performance and resource efficiency. These findings provide new insights into the efficient utilization of LLMs and active learning algorithms in text classification tasks, paving the way for their broader application.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/6472544","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/6472544","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning–based classifiers have been used for text classification, such as sentiment analysis, news classification, and toxic comment classification. However, supervised machine learning models often require large amounts of labeled data for training, and manual annotation is both labor-intensive and requires domain-specific knowledge, leading to relatively high annotation costs. To address this issue, we propose an approach that integrates large language models (LLMs) into an active learning framework, achieving high cross-task text classification performance without the need for any manually labeled data. Furthermore, compared to directly applying GPT for classification tasks, our approach retains over 93% of its classification performance while requiring only approximately 6% of the computational time and monetary cost, effectively balancing performance and resource efficiency. These findings provide new insights into the efficient utilization of LLMs and active learning algorithms in text classification tasks, paving the way for their broader application.

Abstract Image

将llm应用于主动学习:在没有人工标记数据的情况下实现高成本效益的跨任务文本分类
基于机器学习的分类器已被用于文本分类,如情感分析、新闻分类和有毒评论分类。然而,有监督的机器学习模型通常需要大量标记数据进行训练,手动标注既需要劳动密集型,又需要特定领域的知识,导致标注成本相对较高。为了解决这个问题,我们提出了一种将大型语言模型(llm)集成到主动学习框架中的方法,在不需要任何手动标记数据的情况下实现高跨任务文本分类性能。此外,与直接将GPT应用于分类任务相比,我们的方法保留了93%以上的分类性能,而只需要大约6%的计算时间和金钱成本,有效地平衡了性能和资源效率。这些发现为llm和主动学习算法在文本分类任务中的有效利用提供了新的见解,为其更广泛的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信