International journal of molecular medicine最新文献

筛选
英文 中文
[Retracted] Long non‑coding RNA KCNQ1OT1 promotes nasopharyngeal carcinoma cell cisplatin resistance via the miR‑454/USP47 axis. [撤稿】长非编码 RNA KCNQ1OT1 通过 miR-454/USP47 轴促进鼻咽癌细胞的顺铂耐药性。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-04-01 Epub Date: 2024-02-09 DOI: 10.3892/ijmm.2024.5355
Feng Yuan, Zhiping Lou, Zhifeng Zhou, Xiaojun Yan
{"title":"[Retracted] Long non‑coding RNA KCNQ1OT1 promotes nasopharyngeal carcinoma cell cisplatin resistance via the miR‑454/USP47 axis.","authors":"Feng Yuan, Zhiping Lou, Zhifeng Zhou, Xiaojun Yan","doi":"10.3892/ijmm.2024.5355","DOIUrl":"10.3892/ijmm.2024.5355","url":null,"abstract":"<p><p>Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the colony formation assay data shown in Figs. 4C and 6D and the Transwell migration and invasion assay data shown in Figs. 4D, 6E and 6F were strikingly similar to data appearing in different form in other research articles written by different authors at different research institutes that had either already been published, or were submitted for publication at around the same time. Owing to the fact that contentious data in the above article had already been published elsewhere prior to its submission to <i>International Journal of Molecular Medicine</i>, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 47: 54, 2021; DOI: 10.3892/ijmm.2021.4887].</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139706710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vestibular dysfunction leads to cognitive impairments: State of knowledge in the field and clinical perspectives (Review). 前庭功能障碍导致认知障碍:该领域的知识现状与临床视角(综述)。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-04-01 Epub Date: 2024-02-23 DOI: 10.3892/ijmm.2024.5360
Jiaqi Guo, Jun Wang, Pei Liang, E Tian, Dan Liu, Zhaoqi Guo, Jingyu Chen, Yuejin Zhang, Zhanghong Zhou, Weijia Kong, Debbie C Crans, Yisheng Lu, Sulin Zhang
{"title":"Vestibular dysfunction leads to cognitive impairments: State of knowledge in the field and clinical perspectives (Review).","authors":"Jiaqi Guo, Jun Wang, Pei Liang, E Tian, Dan Liu, Zhaoqi Guo, Jingyu Chen, Yuejin Zhang, Zhanghong Zhou, Weijia Kong, Debbie C Crans, Yisheng Lu, Sulin Zhang","doi":"10.3892/ijmm.2024.5360","DOIUrl":"10.3892/ijmm.2024.5360","url":null,"abstract":"<p><p>The vestibular system may have a critical role in the integration of sensory information and the maintenance of cognitive function. A dysfunction in the vestibular system has a significant impact on quality of life. Recent research has provided evidence of a connection between vestibular information and cognitive functions, such as spatial memory, navigation and attention. Although the exact mechanisms linking the vestibular system to cognition remain elusive, researchers have identified various pathways. Vestibular dysfunction may lead to the degeneration of cortical vestibular network regions and adversely affect synaptic plasticity and neurogenesis in the hippocampus, ultimately contributing to neuronal atrophy and cell death, resulting in memory and visuospatial deficits. Furthermore, the extent of cognitive impairment varies depending on the specific type of vestibular disease. In the present study, the current literature was reviewed, potential causal relationships between vestibular dysfunction and cognitive performance were discussed and directions for future research were proposed.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research progress, challenges and perspectives of phospholipids metabolism in the LXR‑LPCAT3 signaling pathway and its relation to NAFLD (Review). LXR-LPCAT3 信号通路中的磷脂代谢及其与非酒精性脂肪肝关系的研究进展、挑战和前景(综述)。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-04-01 Epub Date: 2024-02-16 DOI: 10.3892/ijmm.2024.5356
Junmin Wang, Jiacheng Li, Yugang Fu, Yingying Zhu, Liubing Lin, Yong Li
{"title":"Research progress, challenges and perspectives of phospholipids metabolism in the LXR‑LPCAT3 signaling pathway and its relation to NAFLD (Review).","authors":"Junmin Wang, Jiacheng Li, Yugang Fu, Yingying Zhu, Liubing Lin, Yong Li","doi":"10.3892/ijmm.2024.5356","DOIUrl":"10.3892/ijmm.2024.5356","url":null,"abstract":"<p><p>Phospholipids (PLs) are principle constituents of biofilms, with their fatty acyl chain composition significantly impacting the biophysical properties of membranes, thereby influencing biological processes. Recent studies have elucidated that fatty acyl chains, under the enzymatic action of lyso‑phosphatidyl‑choline acyltransferases (LPCATs), expedite incorporation into the sn‑2 site of phosphatidyl‑choline (PC), profoundly affecting pathophysiology. Accumulating evidence suggests that alterations in LPCAT activity are implicated in various diseases, including non‑alcoholic fatty liver disease (NAFLD), hepatitis C, atherosclerosis and cancer. Specifically, LPCAT3 is instrumental in maintaining systemic lipid homeostasis through its roles in hepatic lipogenesis, intestinal lipid absorption and lipoprotein secretion. The liver X receptor (LXR), pivotal in lipid homeostasis, modulates cholesterol, fatty acid (FA) and PL metabolism. LXR's capacity to modify PL composition in response to cellular sterol fluctuations is a vital mechanism for protecting biofilms against lipid stress. Concurrently, LXR activation enhances LPCAT3 expression on cell membranes and elevates polyunsaturated PL levels. This activation can ameliorate saturated free FA effects <i>in vitro</i> or endoplasmic reticulum stress <i>in vivo</i> due to lipid accumulation in hepatic cells. Pharmacological interventions targeting LXR, LPCAT and membrane PL components could offer novel therapeutic directions for NAFLD management. The present review primarily focused on recent advancements in understanding the LPCAT3 signaling pathway's role in lipid metabolism related to NAFLD, aiming to identify new treatment targets for the disease.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139740916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytoplasmic localization of SETDB1‑induced Warburg effect via c‑MYC‑LDHA axis enhances migration and invasion in breast carcinoma. SETDB1通过c-MYC-LDHA轴诱导沃伯格效应的细胞质定位增强了乳腺癌的迁移和侵袭。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-04-01 Epub Date: 2024-03-01 DOI: 10.3892/ijmm.2024.5364
Wenlin Yang, Yingze Wei, Ting Wang, Ying Xu, Xiaoxia Jin, Hongyan Qian, Shuyun Yang, Song He
{"title":"Cytoplasmic localization of SETDB1‑induced Warburg effect via c‑MYC‑LDHA axis enhances migration and invasion in breast carcinoma.","authors":"Wenlin Yang, Yingze Wei, Ting Wang, Ying Xu, Xiaoxia Jin, Hongyan Qian, Shuyun Yang, Song He","doi":"10.3892/ijmm.2024.5364","DOIUrl":"10.3892/ijmm.2024.5364","url":null,"abstract":"<p><p>SET domain bifurcated 1 (SETDB1), a pivotal histone lysine methyltransferase, is transported to the cytoplasm via a chromosome region maintenance 1 (CMR1)‑dependent pathway, contributing to non‑histone methylation. However, the function and underlying mechanism of cytoplasmic SETDB1 in breast cancer remain elusive. In the present study, immunohistochemistry revealed that elevated cytoplasmic SETDB1 was correlated with lymph node metastasis and more aggressive breast cancer subtypes. Functionally, wound healing and Transwell assays showed that cytoplasmic SETDB1 is key for cell migration and invasion, as well as induction of epithelial‑mesenchymal transition (EMT), which was reversed by leptomycin B (LMB, a CMR1 inhibitor) treatment. Furthermore, RNA‑seq and metabolite detection revealed that cytoplasmic SETDB1 was associated with metabolism pathway and elevated levels of metabolites involved in the Warburg effect, including glucose, pyruvate, lactate and ATP. Immunoblotting and reverse transcription‑quantitative PCR verified that elevation of cytoplasmic SETDB1 contributed to elevation of c‑MYC expression and subsequent upregulation of lactate dehydrogenase A (LDHA) expression. Notably, gain‑ and loss‑of‑function approaches revealed that LDHA overexpression in T47D cells enhanced migration and invasion by inducing EMT, while its depletion in SETDB1‑overexpressing MCF7 cells reversed SETDB1‑induced migration and invasion, as well as the Warburg effect and EMT. In conclusion, subcellular localization of cytoplasmic SETDB1 may be a pivotal factor in breast cancer progression. The present study offers valuable insight into the novel functions and mechanisms of cytoplasmic SETDB1.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914311/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139996228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stem cell‑mediated modulation of pyroptosis contributes to tissue repair in noninfective inflammatory‑related diseases (Review). 干细胞介导的热蛋白沉积调节有助于非感染性炎症相关疾病的组织修复(综述)。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-03-29 DOI: 10.3892/ijmm.2024.5370
Yi Wei, Li Li, Yiping Wang, Yan Chen, Zhengyang Li, Chufei Huang, Yangchen Wei, Chiyu Jia, Zuo Wang, Junlin Liao
{"title":"Stem cell‑mediated modulation of pyroptosis contributes to tissue repair in noninfective inflammatory‑related diseases (Review).","authors":"Yi Wei, Li Li, Yiping Wang, Yan Chen, Zhengyang Li, Chufei Huang, Yangchen Wei, Chiyu Jia, Zuo Wang, Junlin Liao","doi":"10.3892/ijmm.2024.5370","DOIUrl":"https://doi.org/10.3892/ijmm.2024.5370","url":null,"abstract":"Pyroptosis, a programmed cell death marked by lytic and inflammatory characteristics, plays a crucial role in non‑infectious inflammation‑related diseases but can lead to detrimental outcomes when dysregulated. Stem cells have emerged as key players in modulating pyroptosis through paracrine signaling, offering a novel avenue for tissue repair and regeneration. The present review delved into previous studies elucidating the intricate interplay between stem cells and pyroptosis, emphasizing the potential of stem cell‑based therapies in regulating pyroptotic pathways. The exploration of this dynamic interaction holds promise for developing strategies to harness stem cells for effective tissue repair and regeneration in the context of inflammation‑related diseases.","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140365721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Senolytic combination of dasatinib and quercetin protects against diabetic kidney disease by activating autophagy to alleviate podocyte dedifferentiation via the Notch pathway. 达沙替尼和槲皮素的解毒组合通过激活自噬减轻荚膜细胞通过Notch途径发生的去分化,从而预防糖尿病肾病。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-03-01 Epub Date: 2024-01-19 DOI: 10.3892/ijmm.2024.5350
Xinwang Zhu, Congxiao Zhang, Linlin Liu, Li Xu, Li Yao
{"title":"Senolytic combination of dasatinib and quercetin protects against diabetic kidney disease by activating autophagy to alleviate podocyte dedifferentiation via the Notch pathway.","authors":"Xinwang Zhu, Congxiao Zhang, Linlin Liu, Li Xu, Li Yao","doi":"10.3892/ijmm.2024.5350","DOIUrl":"10.3892/ijmm.2024.5350","url":null,"abstract":"<p><p>The senolytics dasatinib and quercetin (DQ) alleviate age‑related disorders. However, limited information is available regarding the effects of DQ on diabetic kidney disease (DKD). The present study aimed to explore the effects of DQ on DKD and its potential molecular mechanism(s). Dasatinib (5 mg/kg) and quercetin (50 mg/kg) were administered to diabetic db/db mice by gavage for 20 weeks. Body weight, urine albumin‑creatinine ratio (ACR), serum creatinine (Scr), and blood urea nitrogen (BUN) were recorded at the indicated time periods. Periodic acid‑Schiff and Masson's staining were performed to assess the histopathological changes of kidney tissues. Immunohistochemical analysis, immunofluorescence and western blotting were performed to evaluate the expression levels of extracellular matrix (ECM) proteins, autophagic and podocyte differentiation‑related proteins. In addition, mouse podocytes were administered with high‑glucose, DQ and 3‑methyladenine (3‑MA), and the expression levels of autophagic and podocyte differentiation‑related proteins were measured. Moreover, following overexpression of the Notch intracellular domain (NICD), the expression levels of NICD, autophagic and podocyte differentiation‑related proteins were further assessed. DQ significantly reduced the body weight, blood glucose, ACR, Scr and BUN levels and improved the histopathological changes induced in diabetic db/db mice. In addition, DQ caused a significant downregulation of the expression levels of the ECM proteins, improved autophagy and induced an upregulation of the expression levels of podocyte differentiation‑related proteins. Administration of 3‑MA to mice significantly reduced podocyte differentiation, and overexpression of NICD could reverse the effects of DQ on autophagy and podocyte differentiation <i>in vitro</i>. The present study suggests that DQ protects against DKD by activation of autophagy to alleviate podocyte dedifferentiation via the Notch pathway.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10852012/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139491410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Corrigendum] Propofol‑induced HOXA11‑AS promotes proliferation, migration and invasion, but inhibits apoptosis in hepatocellular carcinoma cells by targeting miR‑4458. [更正] 异丙酚诱导的 HOXA11-AS 通过靶向 miR-4458 促进肝癌细胞的增殖、迁移和侵袭,但抑制其凋亡。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-03-01 Epub Date: 2024-01-26 DOI: 10.3892/ijmm.2024.5351
Furong Song, Jun Liu, Yawei Feng, Yi Jin
{"title":"[Corrigendum] Propofol‑induced HOXA11‑AS promotes proliferation, migration and invasion, but inhibits apoptosis in hepatocellular carcinoma cells by targeting miR‑4458.","authors":"Furong Song, Jun Liu, Yawei Feng, Yi Jin","doi":"10.3892/ijmm.2024.5351","DOIUrl":"10.3892/ijmm.2024.5351","url":null,"abstract":"<p><p>Following the publication of the above article, an interested reader drew to the authors' attention that the western blots for the PCNA and cyclin D1 bands appeared to be strikingly similar. The authors were able to re‑examine their original data, and recognize how the error was made with respect to the compilation of this figure (they were also able to demonstrate to the Editorial Office how the error occurred). The revised version of Fig. 3, now incorporating the correct data for the PCNA bands in Fig. 3A, is shown on the next page. The authors can confirm that the errors associated with this figure did not have a significant impact on either the results or the conclusions reported in this study, and all the authors agree with the publication of this Corrigendum. The authors are grateful to the Editor of <i>International Journal of Molecular Medicine</i> for allowing them the opportunity to publish this Corrigendum; furthermore, they apologize to the readership of the Journal for any inconvenience caused. [International Journal of Molecular Medicine 46: 1135‑1145, 2020; DOI: 10.3892/ijmm.2020.4667].</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10852010/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139563588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low‑intensity pulsed ultrasound accelerates diabetic wound healing by ADSC‑derived exosomes via promoting the uptake of exosomes and enhancing angiogenesis. 低强度脉冲超声通过促进外泌体的吸收和增强血管生成,加速 ADSC 衍生外泌体的糖尿病伤口愈合。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-03-01 Epub Date: 2024-01-12 DOI: 10.3892/ijmm.2024.5347
Fanglu Zhong, Sheng Cao, Li Yang, Junbi Liu, Bin Gui, Hao Wang, Nan Jiang, Qing Zhou, Qing Deng
{"title":"Low‑intensity pulsed ultrasound accelerates diabetic wound healing by ADSC‑derived exosomes via promoting the uptake of exosomes and enhancing angiogenesis.","authors":"Fanglu Zhong, Sheng Cao, Li Yang, Junbi Liu, Bin Gui, Hao Wang, Nan Jiang, Qing Zhou, Qing Deng","doi":"10.3892/ijmm.2024.5347","DOIUrl":"10.3892/ijmm.2024.5347","url":null,"abstract":"<p><p>Diabetic wounds remain a great challenge for clinicians globally as a lack of effective radical treatment often results in poor prognosis. Exosomes derived from adipose‑derived stem cells (ADSC‑Exos) have been explored as an appealing nanodrug delivery system in the treatment of diabetic wounds. However, the short half‑life and low utilization efficiency of exosomes limit their therapeutic effects. Low‑intensity pulsed ultrasound (LIPUS) provides a non‑invasive mechanical stimulus to cells and exerts a number of biological effects such as cavitation and thermal effects. In the present study, whether LIPUS could enhance ADSC‑Exo‑mediated diabetic wound repair was investigated and its possible mechanism of action was explored. After isolation and characterization, ADSC‑Exos were injected into mice with diabetic wounds, then the mice were exposed to LIPUS irradiation. The control mice were subcutaneously injected with PBS. Wound healing assays, laser Doppler perfusion, Masson's staining and angiogenesis assays were used to assess treatment efficiency. Then, ADSC‑Exos were cocultured with human umbilical vein endothelial cells (HUVECs), and the proliferation, migration and tube formation of HUVECs were assessed. Moreover, the cellular uptake of ADSC‑Exos <i>in</i> <i>vitro</i> and <i>in</i> <i>vivo</i> was assessed to explore the synergistic mechanisms underlying the effects of LIPUS. The <i>in</i> <i>vivo</i> results demonstrated that LIPUS increased the uptake of exosomes and prolonged the residence of exosomes in the wound area, thus enhancing angiogenesis and accelerating wound repair in diabetic mice. The <i>in</i> <i>vitro</i> results further confirmed that LIPUS enhanced the uptake efficiency of ADSC‑Exos by 10.93‑fold and significantly increased the proliferation, migration and tubular formation of HUVECs. Therefore, the present study indicates that LIPUS is a promising strategy to improve the therapeutic effects of ADSC‑Exos in diabetic wounds by promoting the cellular uptake of exosomes and enhancing angiogenesis.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10836517/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139424625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Retracted] Antagonist targeting miR‑106b‑5p attenuates acute renal injury by regulating renal function, apoptosis and autophagy via the upregulation of TCF4. [撤稿】靶向 miR-106b-5p 的拮抗剂通过上调 TCF4 来调节肾功能、细胞凋亡和自噬,从而减轻急性肾损伤。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-03-01 Epub Date: 2024-02-01 DOI: 10.3892/ijmm.2024.5353
Jing-Meng Hu, Li-Jie He, Peng-Bo Wang, Yan Yu, Ya-Ping Ye, Li Liang
{"title":"[Retracted] Antagonist targeting miR‑106b‑5p attenuates acute renal injury by regulating renal function, apoptosis and autophagy via the upregulation of TCF4.","authors":"Jing-Meng Hu, Li-Jie He, Peng-Bo Wang, Yan Yu, Ya-Ping Ye, Li Liang","doi":"10.3892/ijmm.2024.5353","DOIUrl":"10.3892/ijmm.2024.5353","url":null,"abstract":"<p><p>Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the EdU staining assay data shown in Figs. 4C and 5C and the western blotting data shown in Fig. 4E were strikingly similar to data appearing in different form in other research articles written by different authors at different research institutes that had either already been published, or were submitted for publication at around the same time. Owing to the fact that contentious data in the above article had already been submitted for publication elsewhere prior to its submission to <i>International Journal of Molecular Medicine</i>, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 48: 169, 2021; DOI: 10.3892/ijmm.2021.5002].</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10852009/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Retracted] Upregulation of miR‑183‑5p is responsible for the promotion of apoptosis and inhibition of the epithelial‑mesenchymal transition, proliferation, invasion and migration of human endometrial cancer cells by downregulating Ezrin. [撤稿】miR-183-5p 的上调通过下调 Ezrin 促进人子宫内膜癌细胞的凋亡,并抑制其上皮-间质转化、增殖、侵袭和迁移。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-03-01 Epub Date: 2024-01-12 DOI: 10.3892/ijmm.2024.5345
Hua Yan, Bing-Mei Sun, Yu-Ying Zhang, Yu-Juan Li, Cheng-Xiang Huang, Fu-Zhong Feng, Cui Li
{"title":"[Retracted] Upregulation of miR‑183‑5p is responsible for the promotion of apoptosis and inhibition of the epithelial‑mesenchymal transition, proliferation, invasion and migration of human endometrial cancer cells by downregulating Ezrin.","authors":"Hua Yan, Bing-Mei Sun, Yu-Ying Zhang, Yu-Juan Li, Cheng-Xiang Huang, Fu-Zhong Feng, Cui Li","doi":"10.3892/ijmm.2024.5345","DOIUrl":"10.3892/ijmm.2024.5345","url":null,"abstract":"<p><p>Following the publication of this article, a concerned reader drew to the Editor's attention that, in Fig. 9C on p. 2478 showing the results of Transwell invasion assay experiments, unexpected areas of similarity were identified in terms of the cellular patterns revealed both within the data panels for the six different experiments portrayed in this figure, and comparing among them. After having conducted an internal investigation, the Editor of <i>International Journal of Molecular Medicine</i> has reached the conclusion that the overlapping sections of data shown in this figure were unlikely to have arisen by coincidence. Therefore, on the grounds of a lack of confidence in the integrity of these data, the Editor has decided that the article should be retracted from the publication. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused, and thanks the interested reader for drawing this matter to our attention. [International Journal of Molecular Medicine 42: 2469‑2480, 2018; DOI: 10.3892/ijmm.2018.3853].</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10836491/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139424624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信