International journal of molecular medicine最新文献

筛选
英文 中文
[Retracted] Knockdown of SNHG16 suppresses the proliferation and induces the apoptosis of leukemia cells via miR‑193a‑5p/CDK8. [撤稿】通过 miR-193a-5p/CDK8 敲除 SNHG16 可抑制白血病细胞的增殖并诱导其凋亡。
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-07-01 Epub Date: 2024-06-21 DOI: 10.3892/ijmm.2024.5389
Meihua Piao, Li Zhang
{"title":"[Retracted] Knockdown of SNHG16 suppresses the proliferation and induces the apoptosis of leukemia cells via miR‑193a‑5p/CDK8.","authors":"Meihua Piao, Li Zhang","doi":"10.3892/ijmm.2024.5389","DOIUrl":"10.3892/ijmm.2024.5389","url":null,"abstract":"<p><p>Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the colony formation assay data shown in Fig. 7A on p. 1183 were strikingly similar to data appearing in different form in the following article written by different authors at different research institutes that had already been published prior to its date of submission: Lou L, Chen G, Zhong B and Liu F: <i>Lycium barbarum</i> polysaccharide induced apoptosis and inhibited proliferation in infantile hemangioma endothelial cells via down‑regulation of PI3K/AKT signaling pathway. Biosci Rep 39: BSR20191182, 2019. In addition, possible anomalies were noted regarding the appearance of the western blots in the paper. Owing to the fact that the contentious data in the above article had already been published prior to its submission to <i>International Journal of Molecular Medicine</i>, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 46: 1175‑1185, 2020; DOI: 10.3892/ijmm.2020.4671].</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paeoniflorigenone inhibits ovarian cancer metastasis through targeting the MUC1/Wnt/β‑catenin pathway. 芍药甙元酮通过靶向 MUC1/Wnt/β-catenin 通路抑制卵巢癌转移
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-07-01 Epub Date: 2024-05-24 DOI: 10.3892/ijmm.2024.5384
Qingling Liu, Liqin Jiang, Yun Zhao, Fang Su, Junfeng Li, Xinxin Tian, Wenhong Liu, Xiawei Jiang, Ye Xu, Fangfang Tao
{"title":"Paeoniflorigenone inhibits ovarian cancer metastasis through targeting the MUC1/Wnt/β‑catenin pathway.","authors":"Qingling Liu, Liqin Jiang, Yun Zhao, Fang Su, Junfeng Li, Xinxin Tian, Wenhong Liu, Xiawei Jiang, Ye Xu, Fangfang Tao","doi":"10.3892/ijmm.2024.5384","DOIUrl":"10.3892/ijmm.2024.5384","url":null,"abstract":"<p><p>Ovarian cancer (OC) is one of the most common gynecological malignancies. Currently, chemoradiotherapy is the primary clinical treatment approach for OC; however, it has severe side effects and a high rate of recurrence. Thus, there is an urgent need to develop innovative therapeutic options. Paeoniflorigenone (PFG) is a monoterpene compound isolated from the traditional Chinese medicine Paeoniae Radix Rubra. PFG can inhibit the proliferation of tumor cells; however, its anticancer activity against OC has yet to be elucidated. Mucin 1 (MUC1) is highly expressed in various malignant tumors, and is associated with tumor proliferation, metastasis and epithelial‑mesenchymal transition (EMT). In addition, MUC1 affects numerous signaling pathways in tumor cells. In order to develop a possible treatment approach for metastatic OC, the antitumor activity of PFG in OC cells was investigated using Cell Counting Kit‑8 assay, Edu assay, flow cytometry, Transwell assay and western blot analysis. In addition, it was assessed how PFG affects MUC1 expression and function. The experiments revealed that PFG significantly inhibited OC cell proliferation, migration, invasion and EMT. PFG also induced S‑phase cell cycle arrest in OC cells. Furthermore, PFG inhibited MUC1 promoter activity, which led to a decrease in MUC1 protein expression. By contrast, MUC1 promoted OC progression, including cell proliferation, cell cycle progression and cell migration. Stable knockdown of MUC1 in OC cells improved the ability of PFG to block the Wnt/β‑catenin pathway, and to limit tumor cell invasion and migration, whereas MUC1 overexpression partially counteracted the antitumor effects of PFG. In conclusion, the present study demonstrated that PFG may inhibit the MUC1/Wnt/β‑catenin pathway to induce anti‑metastatic, anti‑invasive and anti‑EMT effects on OC. Notably, MUC1 may be a direct target of PFG. Thus, PFG holds promise as a specific antitumor agent for the treatment of OC.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188981/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Public neoantigens in breast cancer immunotherapy (Review). 乳腺癌免疫疗法中的公共新抗原(综述)。
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-07-01 Epub Date: 2024-06-21 DOI: 10.3892/ijmm.2024.5388
Natthaporn Sueangoen, Peti Thuwajit, Pa-Thai Yenchitsomanus, Chanitra Thuwajit
{"title":"Public neoantigens in breast cancer immunotherapy (Review).","authors":"Natthaporn Sueangoen, Peti Thuwajit, Pa-Thai Yenchitsomanus, Chanitra Thuwajit","doi":"10.3892/ijmm.2024.5388","DOIUrl":"10.3892/ijmm.2024.5388","url":null,"abstract":"<p><p>Among women globally, breast cancer is the most prevalent cancer and the leading cause of cancer‑related death. Interestingly, though genetic mutations contribute to the disease, <15% of women diagnosed with breast cancer have a family history of the disease, suggesting a prevalence of sporadic genetic mutations in breast cancer development. In the rapidly rising field of cancer genomics, neoantigen‑based immunotherapy has come to the fore. The investigation of novel proteins arising from unique somatic mutations or neoantigens have opened a new pathway for both individualized and public cancer treatments. Because they are shared among individuals with similar genetic changes, public neoantigens provide an opportunity for 'off‑the‑shelf' anticancer therapies, potentially extending the benefits to a wider patient group. The present review aimed to highlight the role of shared or public neoantigens as therapeutic targets for patients with breast cancer, emphasizing common hotspot mutations of certain genes identified in breast cancer. The clinical utilization of public neoantigen‑based therapies for breast cancer treatment were also discussed.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188978/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anthrahydroquinone‑2,6‑disulfonate attenuates PQ‑induced acute lung injury through decreasing pulmonary microvascular permeability via inhibition of the PI3K/AKT/eNOS pathway. 2,6-二磺酸蒽氢醌通过抑制 PI3K/AKT/eNOS 通路降低肺微血管通透性,从而减轻 PQ 诱导的急性肺损伤。
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-07-01 Epub Date: 2024-06-14 DOI: 10.3892/ijmm.2024.5387
Nan Li, Yang Yi, Jun Chen, Yue Huang, Jichao Peng, Zhao Li, Ying Wang, Jiadong Zhang, Chaoqun Xu, Haoran Liu, Jinghua Li, Xiaoran Liu
{"title":"Anthrahydroquinone‑2,6‑disulfonate attenuates PQ‑induced acute lung injury through decreasing pulmonary microvascular permeability via inhibition of the PI3K/AKT/eNOS pathway.","authors":"Nan Li, Yang Yi, Jun Chen, Yue Huang, Jichao Peng, Zhao Li, Ying Wang, Jiadong Zhang, Chaoqun Xu, Haoran Liu, Jinghua Li, Xiaoran Liu","doi":"10.3892/ijmm.2024.5387","DOIUrl":"10.3892/ijmm.2024.5387","url":null,"abstract":"<p><p>In paraquat (PQ)‑induced acute lung injury (ALI)/ acute respiratory distress syndrome, PQ disrupts endothelial cell function and vascular integrity, which leads to increased pulmonary leakage. Anthrahydroquinone‑2,6‑disulfonate (AH2QDS) is a reducing agent that attenuates the extent of renal injury and improves survival in PQ‑intoxicated Sprague‑Dawley (SD) rats. The present study aimed to explore the beneficial role of AH2QDS in PQ‑induced ALI and its related mechanisms. A PQ‑intoxicated ALI model was established using PQ gavage in SD rats. Human pulmonary microvascular endothelial cells (HPMECs) were challenged with PQ. Superoxide dismutase, malondialdehyde, reactive oxygen species and nitric oxide (NO) fluorescence were examined to detect the level of oxidative stress in HPMECs. The levels of TNF‑α, IL‑1β and IL‑6 were assessed using an ELISA. Transwell and Cell Counting Kit‑8 assays were performed to detect the migration and proliferation of the cells. The pathological changes in lung tissues and blood vessels were examined by haematoxylin and eosin staining. Evans blue staining was used to detect pulmonary microvascular permeability. Western blotting was performed to detect target protein levels. Immunofluorescence and immunohistochemical staining were used to detect the expression levels of target proteins in HPMECs and lung tissues. AH2QDS inhibited inflammatory responses in lung tissues and HPMECs, and promoted the proliferation and migration of HPMECs. In addition, AH2QDS reduced pulmonary microvascular permeability by upregulating the levels of vascular endothelial‑cadherin, zonula occludens‑1 and CD31, thereby attenuating pathological changes in the lungs in rats. Finally, these effects may be related to the suppression of the phosphatidylinositol‑3‑kinase (PI3K)/protein kinase B (AKT)/endothelial‑type NO synthase (eNOS) signalling pathway in endothelial cells. In conclusion, AH2QDS ameliorated PQ‑induced ALI by improving alveolar endothelial barrier disruption via modulation of the PI3K/AKT/eNOS signalling pathway, which may be an effective candidate for the treatment of PQ‑induced ALI.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141317257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Corrigendum] Resveratrol upregulates SOCS1 production by lipopolysaccharide‑stimulated RAW264.7 macrophages by inhibiting miR‑155 [更正] 白藜芦醇通过抑制 miR-155 上调脂多糖刺激的 RAW264.7 巨噬细胞产生的 SOCS1
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-06-03 DOI: 10.3892/ijmm.2024.5386
Chunfang Ma, Yin Wang, Aijuan Shen, Wanru Cai
{"title":"[Corrigendum] Resveratrol upregulates SOCS1 production by lipopolysaccharide‑stimulated RAW264.7 macrophages by inhibiting miR‑155","authors":"Chunfang Ma, Yin Wang, Aijuan Shen, Wanru Cai","doi":"10.3892/ijmm.2024.5386","DOIUrl":"https://doi.org/10.3892/ijmm.2024.5386","url":null,"abstract":"","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141271252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of DNA methylation and its application in inflammatory bowel disease (Review). DNA 甲基化的影响及其在炎症性肠病中的应用(综述)。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-06-01 Epub Date: 2024-05-02 DOI: 10.3892/ijmm.2024.5379
Francis Atim Akanyibah, Yi Zhu, Aijun Wan, Dickson Kofi Wiredu Ocansey, Yuxuan Xia, An-Ning Fang, Fei Mao
{"title":"Effects of DNA methylation and its application in inflammatory bowel disease (Review).","authors":"Francis Atim Akanyibah, Yi Zhu, Aijun Wan, Dickson Kofi Wiredu Ocansey, Yuxuan Xia, An-Ning Fang, Fei Mao","doi":"10.3892/ijmm.2024.5379","DOIUrl":"10.3892/ijmm.2024.5379","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) is marked by persistent inflammation, and its development and progression are linked to environmental, genetic, immune system and gut microbial factors. DNA methylation (DNAm), as one of the protein modifications, is a crucial epigenetic process used by cells to control gene transcription. DNAm is one of the most common areas that has drawn increasing attention recently, with studies revealing that the interleukin (IL)‑23/IL‑12, wingless‑related integration site, IL‑6‑associated signal transducer and activator of transcription 3, suppressor of cytokine signaling 3 and apoptosis signaling pathways are involved in DNAm and in the pathogenesis of IBD. It has emerged that DNAm‑associated genes are involved in perpetuating the persistent inflammation that characterizes a number of diseases, including IBD, providing a novel therapeutic strategy for exploring their treatment. The present review discusses DNAm‑associated genes in the pathogenesis of IBD and summarizes their application as possible diagnostic, prognostic and therapeutic biomarkers in IBD. This may provide a reference for the particular form of IBD and its related methylation genes, aiding in clinical decision‑making and encouraging therapeutic alternatives.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093555/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictive DNA damage signaling for low‑dose ionizing radiation. 低剂量电离辐射的 DNA 损伤信号预测。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-06-01 Epub Date: 2024-05-02 DOI: 10.3892/ijmm.2024.5380
Jeong-In Park, Seung-Youn Jung, Kyung-Hee Song, Dong-Hyeon Lee, Jiyeon Ahn, Sang-Gu Hwang, In-Su Jung, Dae-Seog Lim, Jie-Young Song
{"title":"Predictive DNA damage signaling for low‑dose ionizing radiation.","authors":"Jeong-In Park, Seung-Youn Jung, Kyung-Hee Song, Dong-Hyeon Lee, Jiyeon Ahn, Sang-Gu Hwang, In-Su Jung, Dae-Seog Lim, Jie-Young Song","doi":"10.3892/ijmm.2024.5380","DOIUrl":"10.3892/ijmm.2024.5380","url":null,"abstract":"<p><p>Numerous studies have attempted to develop biological markers for the response to radiation for broad and straightforward application in the field of radiation. Based on a public database, the present study selected several molecules involved in the DNA damage repair response, cell cycle regulation and cytokine signaling as promising candidates for low‑dose radiation‑sensitive markers. The HuT 78 and IM‑9 cell lines were irradiated in a concentration‑dependent manner, and the expression of these molecules was analyzed using western blot analysis. Notably, the activation of ataxia telangiectasia mutated (ATM), checkpoint kinase 2 (CHK2), p53 and H2A histone family member X (H2AX) significantly increased in a concentration‑dependent manner, which was also observed in human peripheral blood mononuclear cells. To determine the radioprotective effects of cinobufagin, as an ATM and CHK2 activator, an <i>in vivo</i> model was employed using sub‑lethal and lethal doses in irradiated mice. Treatment with cinobufagin increased the number of bone marrow cells in sub‑lethal irradiated mice, and slightly elongated the survival of lethally irradiated mice, although the difference was not statistically significant. Therefore, KU60019, BML‑277, pifithrin‑α, and nutlin‑3a were evaluated for their ability to modulate radiation‑induced cell death. The use of BML‑277 led to a decrease in radiation‑induced p‑CHK2 and γH2AX levels and mitigated radiation‑induced apoptosis. On the whole, the present study provides a novel approach for developing drug candidates based on the profiling of biological radiation‑sensitive markers. These markers hold promise for predicting radiation exposure and assessing the associated human risk.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093554/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140862171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review). PCSK9 在各种代谢状态下对血栓形成和止血的影响:血脂及其他(综述)。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-06-01 Epub Date: 2024-05-17 DOI: 10.3892/ijmm.2024.5381
Shan Chong, Guangyan Mu, Xinan Cen, Qian Xiang, Yimin Cui
{"title":"Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review).","authors":"Shan Chong, Guangyan Mu, Xinan Cen, Qian Xiang, Yimin Cui","doi":"10.3892/ijmm.2024.5381","DOIUrl":"10.3892/ijmm.2024.5381","url":null,"abstract":"<p><p>Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors are widely recognised as being able to induce a potent reduction in low‑density lipoprotein‑cholesterol. An increasing number of studies have suggested that PCSK9 also influences the haemostatic system by altering platelet function and the coagulation cascade. These findings have significant implications for anti‑PCSK9 therapy in patients with specific coagulation conditions, including expanded indications, dose adjustments and drug interactions. The present review summarises the changes in PCSK9 levels in individuals with liver diseases, chronic kidney diseases, diabetes mellitus, cancer and other disease states, and discusses their impact on thrombosis and haemostasis. Furthermore, the structure, effects and regulatory mechanisms of PCSK9 on platelets, coagulation factors, inflammatory cells and endothelial cells during coagulation and haemostasis are described.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140957181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of circular RNA as competing endogenous RNA in ovarian cancer (Review). 环状 RNA 作为竞争性内源性 RNA 在卵巢癌中的作用(综述)。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-05-01 Epub Date: 2024-03-08 DOI: 10.3892/ijmm.2024.5365
Wanlu Ye, Nan Xiang, Qing Wang, Yanming Lu
{"title":"Role of circular RNA as competing endogenous RNA in ovarian cancer (Review).","authors":"Wanlu Ye, Nan Xiang, Qing Wang, Yanming Lu","doi":"10.3892/ijmm.2024.5365","DOIUrl":"10.3892/ijmm.2024.5365","url":null,"abstract":"<p><p>Circular RNA (circRNA), a type of non‑coding RNA, plays a regulatory role in biological processes. The special loop structure of circRNA makes it highly stable and specific in diseased tissues and cells, especially in tumors. Competing endogenous RNAs (ceRNAs) compete for the binding of microRNA (miRNA) at specific binding sites and thus regulate gene expression. ceRNAs play an important role in various diseases and are currently recognized as the most prominent mechanism of action of circRNAs. circRNAs can modulate the proliferation, migration, invasion and apoptosis of tumor cells through the ceRNA mechanism. With further research, circRNAs may serve as novel markers and therapeutic targets for ovarian cancer (OC). In the present review, the research progress of circRNAs as ceRNAs in OC was summarized, focusing on the effects of the circRNA/miRNA/mRNA axis on the biological functions of OC cells through mediating pivotal signaling pathways. The role of circRNAs in the diagnosis, prognostic assessment and treatment of OC was also discussed in the present review.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of microglia/macrophage polarisation in intraocular diseases (Review). 小胶质细胞/巨噬细胞极化在眼内疾病中的作用(综述)。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-05-01 Epub Date: 2024-03-29 DOI: 10.3892/ijmm.2024.5369
Haoran Li, Biao Li, Yanlin Zheng
{"title":"Role of microglia/macrophage polarisation in intraocular diseases (Review).","authors":"Haoran Li, Biao Li, Yanlin Zheng","doi":"10.3892/ijmm.2024.5369","DOIUrl":"10.3892/ijmm.2024.5369","url":null,"abstract":"<p><p>Macrophages form a crucial component of the innate immune system, and their activation is indispensable for various aspects of immune and inflammatory processes, tissue repair, and maintenance of the balance of the body's state. Macrophages are found in all ocular tissues, spanning from the front surface, including the cornea, to the posterior pole, represented by the choroid/sclera. The neural retina is also populated by specialised resident macrophages called microglia. The plasticity of microglia/macrophages allows them to adopt different activation states in response to changes in the tissue microenvironment. When exposed to various factors, microglia/macrophages polarise into distinct phenotypes, each exhibiting unique characteristics and roles. Furthermore, extensive research has indicated a close association between microglia/macrophage polarisation and the development and reversal of various intraocular diseases. The present article provides a review of the recent findings on the association between microglia/macrophage polarisation and ocular pathological processes (including autoimmune uveitis, optic neuritis, sympathetic ophthalmia, retinitis pigmentosa, glaucoma, proliferative vitreoretinopathy, subretinal fibrosis, uveal melanoma, ischaemic optic neuropathy, retinopathy of prematurity and choroidal neovascularization). The paradoxical role of microglia/macrophage polarisation in retinopathy of prematurity is also discussed. Several studies have shown that microglia/macrophages are involved in the pathology of ocular diseases. However, it is required to further explore the relevant mechanisms and regulatory processes. The relationship between the functional diversity displayed by microglia/macrophage polarisation and intraocular diseases may provide a new direction for the treatment of intraocular diseases.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998719/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140318249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信