International journal of molecular medicine最新文献

筛选
英文 中文
Roles of long non‑coding RNAs in esophageal cell squamous carcinoma (Review). 长非编码 RNA 在食管鳞状细胞癌中的作用(综述)。
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-08-01 Epub Date: 2024-07-04 DOI: 10.3892/ijmm.2024.5396
Qihang Yan, Wingshing Wong, Li Gong, Jie Yang, Dachuan Liang, Kok-Yong Chin, Shuqin Dai, Junye Wang
{"title":"Roles of long non‑coding RNAs in esophageal cell squamous carcinoma (Review).","authors":"Qihang Yan, Wingshing Wong, Li Gong, Jie Yang, Dachuan Liang, Kok-Yong Chin, Shuqin Dai, Junye Wang","doi":"10.3892/ijmm.2024.5396","DOIUrl":"10.3892/ijmm.2024.5396","url":null,"abstract":"<p><p>Esophageal squamous cell carcinoma (ESCC) is a prevalent and deadly malignancy of the digestive tract. Recent research has identified long non‑coding RNAs (lncRNAs) as crucial regulators in the pathogenesis of ESCC. These lncRNAs, typically exceeding 200 nucleotides, modulate gene expression through various mechanisms, including the competing endogenous RNA (ceRNA) pathway and RNA‑protein interactions. The current study reviews the multifaceted roles of lncRNAs in ESCC, highlighting their involvement in processes such as proliferation, migration, invasion, epithelial‑mesenchymal transition, cell cycle progression, resistance to radiotherapy and chemotherapy, glycolysis, apoptosis, angiogenesis, autophagy, tumor growth, metastasis and the maintenance of cancer stem cells. Specific lncRNAs like HLA complex P5, LINC00963 and non‑coding repressor of NFAT have been shown to enhance resistance to radio‑ and chemotherapy by modulating pathways such as AKT signaling and microRNA interaction, which promote cell survival and proliferation under therapeutic stress. Furthermore, lncRNAs like family with sequence similarity 83, member A antisense RNA 1, zinc finger NFX1‑type containing 1 antisense RNA 1 and taurine upregulated gene 1 are implicated in enhancing invasive and proliferative capabilities of ESCC cells through the ceRNA mechanism, while interactions with RNA‑binding proteins further influence cancer cell behavior. The comprehensive analysis underscores the potential of lncRNAs as biomarkers for prognosis and therapeutic targets in ESCC, suggesting avenues for future research focused on elucidating the detailed molecular mechanisms and clinical applications of lncRNAs in ESCC management.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic impacts of GNE‑477‑loaded H2O2 stimulus‑responsive dodecanoic acid‑phenylborate ester‑dextran polymeric micelles on osteosarcoma. GNE-477负载的H2O2刺激响应十二烷酸-苯硼酸酯-葡聚糖聚合物胶束对骨肉瘤的治疗影响
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-08-01 Epub Date: 2024-06-28 DOI: 10.3892/ijmm.2024.5393
Songmu Pan, Zhuan Zou, Xiaofeng Zhou, Jiyong Wei, Huijiang Liu, Zhongyi Su, Gui Liao, Guangyu Huang, Zonggui Huang, Yi Xu, Minan Lu, Ronghe Gu
{"title":"Therapeutic impacts of GNE‑477‑loaded H<sub>2</sub>O<sub>2</sub> stimulus‑responsive dodecanoic acid‑phenylborate ester‑dextran polymeric micelles on osteosarcoma.","authors":"Songmu Pan, Zhuan Zou, Xiaofeng Zhou, Jiyong Wei, Huijiang Liu, Zhongyi Su, Gui Liao, Guangyu Huang, Zonggui Huang, Yi Xu, Minan Lu, Ronghe Gu","doi":"10.3892/ijmm.2024.5393","DOIUrl":"10.3892/ijmm.2024.5393","url":null,"abstract":"<p><p>Osteosarcoma (OS) is a highly malignant primary bone neoplasm that is the leading cause of cancer‑associated death in young people. GNE‑477 belongs to the second generation of mTOR inhibitors and possesses promising potential in the treatment of OS but dose tolerance and drug toxicity limit its development and utilization. The present study aimed to prepare a novel H<sub>2</sub>O<sub>2</sub> stimulus‑responsive dodecanoic acid (DA)‑phenylborate ester‑dextran (DA‑B‑DEX) polymeric micelle delivery system for GNE‑477 and evaluate its efficacy. The polymer micelles were characterized by morphology, size and critical micelle concentration. The GNE‑477 loaded DA‑B‑DEX (GNE‑477@DBD) tumor‑targeting drug delivery system was established and the release of GNE‑477 was measured. The cellular uptake of GNE‑477@DBD by three OS cell lines (MG‑63, U2OS and 143B cells) was analyzed utilizing a fluorescent tracer technique. The hydroxylated DA‑B was successfully grafted onto dextran at a grafting rate of 3%, suitable for forming amphiphilic micelles. Following exposure to H<sub>2</sub>O<sub>2</sub>, the DA‑B‑DEX micelles ruptured and released the drug rapidly, leading to increased uptake of GNE‑477@DBD by cells with sustained release of GNE‑477. The <i>in vitro</i> experiments, including MTT assay, flow cytometry, western blotting and RT‑qPCR, demonstrated that GNE‑477@DBD inhibited tumor cell viability, arrested cell cycle in G1 phase, induced apoptosis and blocked the PI3K/Akt/mTOR cascade response. <i>In vivo</i>, through the observation of mice tumor growth and the results of H&E staining, the GNE‑477@DBD group exhibited more positive therapeutic outcomes than the free drug group with almost no adverse effects on other organs. In conclusion, H<sub>2</sub>O<sub>2</sub>‑responsive DA‑B‑DEX presents a promising delivery system for hydrophobic anti‑tumor drugs for OS therapy.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232662/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Naringenin modulates the NO‑cGMP‑PKG signaling pathway by binding to AKT to enhance osteogenic differentiation in hPDLSCs. 柚皮素通过与 AKT 结合调节 NO-cGMP-PKG 信号通路,从而增强 hPDLSCs 的成骨分化。
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-08-01 Epub Date: 2024-06-28 DOI: 10.3892/ijmm.2024.5391
Shenghong Li, Zhenqiang Xiong, Yuxin Lan, Qian Zheng, Li Zhang, Xiaomei Xu
{"title":"Naringenin modulates the NO‑cGMP‑PKG signaling pathway by binding to AKT to enhance osteogenic differentiation in hPDLSCs.","authors":"Shenghong Li, Zhenqiang Xiong, Yuxin Lan, Qian Zheng, Li Zhang, Xiaomei Xu","doi":"10.3892/ijmm.2024.5391","DOIUrl":"10.3892/ijmm.2024.5391","url":null,"abstract":"<p><p>Naringenin (NAR) is a prominent flavanone that has been recognized for its capacity to promote the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). The present study aimed to explore how NAR promotes the osteogenic differentiation of hPDLSCs and to assess its efficacy in repairing alveolar bone defects. For this purpose, a protein‑protein interaction network of NAR action was established by mRNA sequencing and network pharmacological analysis. Gene and protein expression levels were evaluated by reverse transcription‑quantitative and western blotting. Alizarin red and alkaline phosphatase staining were also employed to observe the osteogenic capacity of hPDLSCs, and immunofluorescence was used to examine the co‑localization of NAR molecular probes and AKT in cells. The repair of mandibular defects was assessed by micro‑computed tomography (micro‑CT), Masson staining and immunofluorescence. Additionally, computer simulation docking software was utilized to determine the binding affinity of NAR to the target protein, AKT. The results demonstrated that activation of the nitric oxide (NO)‑cyclic guanosine monophosphate (cGMP)‑protein kinase G (PKG) signaling pathway could promote the osteogenic differentiation of hPDLSCs. Inhibition of AKT, endothelial nitric oxide synthase and soluble guanylate cyclase individually attenuated the ability of NAR to promote the osteogenic differentiation of hPDLSCs. Micro‑CT and Masson staining revealed that the NAR gavage group exhibited more new bone formation at the defect site. Immunofluorescence assays confirmed the upregulated expression of Runt‑related transcription factor 2 and osteopontin in the NAR gavage group. In conclusion, the results of the present study suggested that NAR promotes the osteogenic differentiation of hPDLSCs by activating the NO‑cGMP‑PKG signaling pathway through its binding to AKT.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Retracted] Sirt1 inhibits HG‑induced endothelial injury: Role of Mff‑based mitochondrial fission and F‑actin homeostasis‑mediated cellular migration. [撤稿】Sirt1 可抑制 HG 诱导的内皮损伤:基于 Mff 的线粒体裂变和 F-肌动蛋白平衡介导的细胞迁移的作用
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-08-01 Epub Date: 2024-06-28 DOI: 10.3892/ijmm.2024.5390
Ruijie Qin, Lina Zhang, Dong Lin, Fei Xiao, Lixin Guo
{"title":"[Retracted] Sirt1 inhibits HG‑induced endothelial injury: Role of Mff‑based mitochondrial fission and F‑actin homeostasis‑mediated cellular migration.","authors":"Ruijie Qin, Lina Zhang, Dong Lin, Fei Xiao, Lixin Guo","doi":"10.3892/ijmm.2024.5390","DOIUrl":"10.3892/ijmm.2024.5390","url":null,"abstract":"<p><p>Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the immunochemistry data shown in Figs. 4K and 7G were strikingly similar to data appearing in different form in other research articles written by different authors at different research institutes that had either already been published, or were submitted for publication at around the same time. Owing to the fact that contentious data in the above article had already been published elsewhere prior to its submission to <i>International Journal of Molecular Medicine</i>, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a satisfactory reply. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 44: 89‑102, 2019; DOI: 10.3892/ijmm.2019.4185].</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metformin prevents the onset and progression of intervertebral disc degeneration: New insights and potential mechanisms (Review). 二甲双胍可预防椎间盘退变的发生和发展:新见解和潜在机制(综述)。
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-08-01 Epub Date: 2024-07-04 DOI: 10.3892/ijmm.2024.5395
Wenzhi Yang, Yipin Yang, Yong Wang, Zongshi Gao, Jingtang Zhang, Weimin Gao, Yanjun Chen, You Lu, Haoyu Wang, Lingyan Zhou, Yifan Wang, Jie Li, Hui Tao
{"title":"Metformin prevents the onset and progression of intervertebral disc degeneration: New insights and potential mechanisms (Review).","authors":"Wenzhi Yang, Yipin Yang, Yong Wang, Zongshi Gao, Jingtang Zhang, Weimin Gao, Yanjun Chen, You Lu, Haoyu Wang, Lingyan Zhou, Yifan Wang, Jie Li, Hui Tao","doi":"10.3892/ijmm.2024.5395","DOIUrl":"10.3892/ijmm.2024.5395","url":null,"abstract":"<p><p>Metformin has been the go‑to medical treatment for addressing type 2 diabetes mellitus (T2DM) as a frontline oral antidiabetic. Obesity, cancer and bone deterioration are linked to T2DM, which is considered a metabolic illness. Numerous diseases associated with T2DM, such as tumours, cardiovascular disease and bone deterioration, may be treated with metformin. Intervertebral disc degeneration (IVDD) is distinguished by degeneration of the spinal disc, accompanied by the gradual depletion of proteoglycans and water in the nucleus pulposus (NP) of the IVD, resulting in lower back pain. The therapeutic effect of metformin on IVDD has also attracted much attention. By stimulating AMP‑activated kinase, metformin could enhance autophagy and suppress cell senescence, apoptosis and inflammation, thus effectively delaying IVDD. The present review aimed to systematically explain the development of IVDD and mechanism of metformin in the treatment and prevention of IVDD to provide a reference for the clinical application of metformin as adjuvant therapy in the treatment of IVDD.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232665/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of ubiquitination in the occurrence and development of osteoporosis (Review). 泛素化在骨质疏松症发生和发展中的作用(综述)。
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-08-01 Epub Date: 2024-06-28 DOI: 10.3892/ijmm.2024.5392
Xiaoxia Fan, Rong Zhang, Guocai Xu, Peiyun Fan, Wei Luo, Chunmei Cai, Ri-Li Ge
{"title":"Role of ubiquitination in the occurrence and development of osteoporosis (Review).","authors":"Xiaoxia Fan, Rong Zhang, Guocai Xu, Peiyun Fan, Wei Luo, Chunmei Cai, Ri-Li Ge","doi":"10.3892/ijmm.2024.5392","DOIUrl":"10.3892/ijmm.2024.5392","url":null,"abstract":"<p><p>The ubiquitin (Ub)‑proteasome system (UPS) plays a pivotal role in maintaining protein homeostasis and function to modulate various cellular processes including skeletal cell differentiation and bone homeostasis. The Ub ligase E3 promotes the transfer of Ub to the target protein, especially transcription factors, to regulate the proliferation, differentiation and survival of bone cells, as well as bone formation. In turn, the deubiquitinating enzyme removes Ub from modified substrate proteins to orchestrate bone remodeling. As a result of abnormal regulation of ubiquitination, bone cell differentiation exhibits disorder and then bone homeostasis is affected, consequently leading to osteoporosis. The present review discussed the role and mechanism of UPS in bone remodeling. However, the specific mechanism of UPS in the process of bone remodeling is still not fully understood and further research is required. The study of the mechanism of action of UPS can provide new ideas and methods for the prevention and treatment of osteoporosis. In addition, the most commonly used osteoporosis drugs that target ubiquitination processes in the clinic are discussed in the current review.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CD150‑dependent activation of EBV‑transformed B cells induces the differentiation of peripheral blood monocytes via the secretion of multiple cytokines CD150 依赖性激活 EBV 转化的 B 细胞,通过分泌多种细胞因子诱导外周血单核细胞分化
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-07-16 DOI: 10.3892/ijmm.2024.5403
Hye Young Kim, Il Keung Seo, Dae Young Hur
{"title":"CD150‑dependent activation of EBV‑transformed B cells induces the differentiation of peripheral blood monocytes via the secretion of multiple cytokines","authors":"Hye Young Kim, Il Keung Seo, Dae Young Hur","doi":"10.3892/ijmm.2024.5403","DOIUrl":"https://doi.org/10.3892/ijmm.2024.5403","url":null,"abstract":"","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141642034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Obesity and lipid metabolism in the development of osteoporosis (Review). 骨质疏松症发病过程中的肥胖和脂质代谢(综述)。
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-07-01 Epub Date: 2024-05-31 DOI: 10.3892/ijmm.2024.5385
Xiaochuan Wang, Chi Zhang, Guang Zhao, Keda Yang, Lin Tao
{"title":"Obesity and lipid metabolism in the development of osteoporosis (Review).","authors":"Xiaochuan Wang, Chi Zhang, Guang Zhao, Keda Yang, Lin Tao","doi":"10.3892/ijmm.2024.5385","DOIUrl":"10.3892/ijmm.2024.5385","url":null,"abstract":"<p><p>Osteoporosis is a common bone metabolic disease that causes a heavy social burden and seriously threatens life. Improving osteogenic capacity is necessary to correct bone mass loss in the treatment of osteoporosis. Osteoblasts are derived from the differentiation of bone marrow mesenchymal stem cells, a process that opposes adipogenic differentiation. The peroxisome proliferator‑activated receptor γ and Wnt/β‑catenin signaling pathways mediate the mutual regulation of osteogenesis and adipogenesis. Lipid substances play an important role in the occurrence and development of osteoporosis. The content and proportion of lipids modulate the activity of immunocytes, mainly macrophages, and the secretion of inflammatory factors, such as IL‑1, IL‑6 and TNF‑α. These inflammatory effectors increase the activity and promote the differentiation of osteoclasts, which leads to bone imbalance and stronger bone resorption. Obesity also decreases the activity of antioxidases and leads to oxidative stress, thereby inhibiting osteogenesis. The present review starts by examining the bidirectional differentiation of BM‑MSCs, describes in detail the mechanism by which lipids affect bone metabolism, and discusses the regulatory role of inflammation and oxidative stress in this process. The review concludes that a reasonable adjustment of the content and proportion of lipids, and the alleviation of inflammatory storms and oxidative damage induced by lipid imbalances, will improve bone mass and treat osteoporosis.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188977/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of lactate and lactate metabolism in liver diseases (Review). 乳酸和乳酸代谢在肝脏疾病中的作用(综述)。
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-07-01 Epub Date: 2024-05-24 DOI: 10.3892/ijmm.2024.5383
Shun Yao, Hongyu Chai, Ting Tao, Li Zhang, Xingyue Yang, Xin Li, Zhiqiang Yi, Yongfeng Wang, Jiaxin An, Guorong Wen, Hai Jin, Biguang Tuo
{"title":"Role of lactate and lactate metabolism in liver diseases (Review).","authors":"Shun Yao, Hongyu Chai, Ting Tao, Li Zhang, Xingyue Yang, Xin Li, Zhiqiang Yi, Yongfeng Wang, Jiaxin An, Guorong Wen, Hai Jin, Biguang Tuo","doi":"10.3892/ijmm.2024.5383","DOIUrl":"10.3892/ijmm.2024.5383","url":null,"abstract":"<p><p>Lactate is a byproduct of glycolysis, and before the Warburg effect was revealed (in which glucose can be fermented in the presence of oxygen to produce lactate) it was considered a metabolic waste product. At present, lactate is not only recognized as a metabolic substrate that provides energy, but also as a signaling molecule that regulates cellular functions under pathophysiological conditions. Lactylation, a post‑translational modification, is involved in the development of various diseases, including inflammation and tumors. Liver disease is a major health challenge worldwide. In normal liver, there is a net lactate uptake caused by gluconeogenesis, exhibiting a higher net lactate clearance rate compared with any other organ. Therefore, abnormalities of lactate and lactate metabolism lead to the development of liver disease, and lactate and lactate metabolism‑related genes can be used for predicting the prognosis of liver disease. Targeting lactate production, regulating lactate transport and modulating lactylation may be potential treatment approaches for liver disease. However, currently there is not a systematic review that summarizes the role of lactate and lactate metabolism in liver diseases. In the present review, the role of lactate and lactate metabolism in liver diseases including liver fibrosis, non‑alcoholic fatty liver disease, acute liver failure and hepatocellular carcinoma was summarized with the aim to provide insights for future research.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188982/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Retracted] Downregulation of CKS1B restrains the proliferation, migration, invasion and angiogenesis of retinoblastoma cells through the MEK/ERK signaling pathway. [撤稿】通过 MEK/ERK 信号通路下调 CKS1B 可抑制视网膜母细胞瘤细胞的增殖、迁移、侵袭和血管生成。
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-07-01 Epub Date: 2024-05-17 DOI: 10.3892/ijmm.2024.5382
Zhou Zeng, Zhao-Lin Gao, Zhi-Pei Zhang, Hai-Bo Jiang, Chang-Quan Yang, Jie Yang, Xiao-Bo Xia
{"title":"[Retracted] Downregulation of CKS1B restrains the proliferation, migration, invasion and angiogenesis of retinoblastoma cells through the MEK/ERK signaling pathway.","authors":"Zhou Zeng, Zhao-Lin Gao, Zhi-Pei Zhang, Hai-Bo Jiang, Chang-Quan Yang, Jie Yang, Xiao-Bo Xia","doi":"10.3892/ijmm.2024.5382","DOIUrl":"10.3892/ijmm.2024.5382","url":null,"abstract":"<p><p>Following the publication of the above paper, it has been drawn to the Editors' attention by a concerned reader that certain of the lumen formation assay data shown in Fig. 5A on p. 112 were strikingly similar to data appearing in different form in another article written by different authors at different research institute, which had already been published in the journal <i>Biomedicine & Pharmacotherapy</i> prior to the submission of this paper to <i>International Journal of Molecular Medicine</i>, and which has also subsequently been retracted. In view of the fact that the contentious data had already apparently been published previously, the Editor of <i>International Journal of Molecular Medicine</i> has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they agreed with the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 44: 103‑114, 2019; DOI: 10.3892/ijmm.2019.4183].</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188980/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140957133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信