International journal of molecular medicine最新文献

筛选
英文 中文
Regulator of G protein signalling 18 promotes osteocyte proliferation by activating the extracellular signal‑regulated kinase signalling pathway. G 蛋白信号调节器 18 通过激活细胞外信号调节激酶信号通路促进骨细胞增殖。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-03-01 Epub Date: 2024-01-12 DOI: 10.3892/ijmm.2024.5346
Yong Meng, Si-Qiang Qiu, Qiang Wang, Jin-Liang Zuo
{"title":"Regulator of G protein signalling 18 promotes osteocyte proliferation by activating the extracellular signal‑regulated kinase signalling pathway.","authors":"Yong Meng, Si-Qiang Qiu, Qiang Wang, Jin-Liang Zuo","doi":"10.3892/ijmm.2024.5346","DOIUrl":"10.3892/ijmm.2024.5346","url":null,"abstract":"<p><p>Osteocyte function is critical for metabolism, remodelling and regeneration of bone tissue. In the present study, the roles of regulator of G protein signalling 18 (RGS18) were assessed in the regulation of osteocyte proliferation and bone formation. Target genes and signalling pathways were screened using the Gene Expression Omnibus (GEO) database and Gene Set Enrichment Analysis (GSEA). The function of RGS18 and the associated mechanisms were analysed by Cell Counting Kit 8 assay, 5‑ethynyl‑2'‑deoxyuridine assay, flow cytometry, reverse transcription‑quantitative PCR, western blotting and immunostaining. Overlap analysis of acutely injured subjects (AIS) and healthy volunteers (HVs) from the GSE93138 and GSE93215 datasets of the GEO database identified four genes: <i>KIAA0825</i>, <i>ANXA3</i>, <i>RGS18</i> and <i>LIPN</i>. Notably, <i>RGS18</i> was more highly expressed in peripheral blood samples from AIS than in those from HVs. Furthermore, <i>RGS18</i> overexpression promoted MLO‑Y4 and MC3T3‑E1 cell viability, proliferation and S‑phase arrest, but inhibited apoptosis by suppressing caspase‑3/9 cleavage. Silencing <i>RGS18</i> exerted the opposite effects. GSEA of GSE93138 revealed that RGS18 has the ability to regulate MAPK signalling. Treatment with the MEK1/2 inhibitor PD98059 reversed the <i>RGS18</i> overexpression‑induced osteocyte proliferation, and treatment with the ERK1/2 activator 12‑O‑tetradecanoylphorbol‑13‑acetate reversed the effects of RGS18 silencing on osteocyte proliferation. In conclusion, RGS18 may contribute to osteocyte proliferation and bone fracture healing via activation of ERK signalling.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10836495/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139424626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NLRP3 inflammasome mediates abnormal epithelial regeneration and distal lung remodeling in silica‑induced lung fibrosis. NLRP3炎性体介导二氧化硅诱导的肺纤维化过程中上皮异常再生和远端肺重塑。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-03-01 Epub Date: 2024-01-19 DOI: 10.3892/ijmm.2024.5349
Hong Zhou, Qun Zhang, Chenyang Liu, Jiahao Fan, Wen Huang, Nan Li, Mingxia Yang, Hong Wang, Weiping Xie, Hui Kong
{"title":"NLRP3 inflammasome mediates abnormal epithelial regeneration and distal lung remodeling in silica‑induced lung fibrosis.","authors":"Hong Zhou, Qun Zhang, Chenyang Liu, Jiahao Fan, Wen Huang, Nan Li, Mingxia Yang, Hong Wang, Weiping Xie, Hui Kong","doi":"10.3892/ijmm.2024.5349","DOIUrl":"10.3892/ijmm.2024.5349","url":null,"abstract":"<p><p>NOD-like receptor protein 3 (NLRP3) inflammasome is closely related to silica particle‑induced chronic lung inflammation but its role in epithelial remodeling, repair and regeneration in the distal lung during development of silicosis remains to be elucidated. The present study aimed to determine the effects of the NLRP3 inflammasome on epithelial remodeling and cellular regeneration and potential mechanisms in the distal lung of silica‑treated mice at three time points. Pulmonary function assessment, inflammatory cell counting, enzyme‑linked immunosorbent assay, histological and immunological analyses, hydroxyproline assay and western blotting were used in the study. Single intratracheal instillation of a silica suspension caused sustained NLRP3 inflammasome activation in the distal lung. Moreover, a time‑dependent increase in airway resistance and a decrease in lung compliance accompanied progression of pulmonary fibrosis. In the terminal bronchiole, lung remodeling including pyroptosis (membrane‑distributed GSDMD<sup>+</sup>), excessive proliferation (Ki67<sup>+</sup>), mucus overproduction (mucin 5 subtype AC and B) and epithelial‑mesenchymal transition (decreased E‑Cadherin<sup>+</sup> and increased Vimentin<sup>+</sup>), was observed by immunofluorescence analysis. Notably, aberrant spatiotemporal expression of the embryonic lung stem/progenitor cell markers SOX2 and SOX9 and ectopic distribution of bronchioalveolar stem cells were observed in the distal lung only on the 7th day after silica instillation (the early inflammatory phase of silicosis). Western blotting revealed that the Sonic hedgehog/Glioma‑associated oncogene (Shh/Gli) and Wnt/β‑catenin pathways were involved in NLRP3 inflammasome activation‑mediated epithelial remodeling and dysregulated regeneration during the inflammatory and fibrotic phases. Overall, sustained NLRP3 inflammasome activation led to epithelial remodeling in the distal lung of mice. Moreover, understanding the spatiotemporal profile of dysregulated epithelial repair and regeneration may provide a novel therapeutic strategy for inhalable particle‑related chronic inflammatory and fibrotic lung disease.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10836498/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139491406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Retracted] MicroRNA‑15a‑5p‑targeting oncogene YAP1 inhibits cell viability and induces cell apoptosis in cervical cancer cells. [撤稿】MicroRNA-15a-5p 靶向癌基因 YAP1 可抑制宫颈癌细胞活力并诱导细胞凋亡。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-03-01 Epub Date: 2024-01-19 DOI: 10.3892/ijmm.2024.5348
Xu Chen, Ruiqin Cao, Haifang Liu, Tuanying Zhang, Xinrong Yuan, Shuxiang Xu
{"title":"[Retracted] MicroRNA‑15a‑5p‑targeting oncogene YAP1 inhibits cell viability and induces cell apoptosis in cervical cancer cells.","authors":"Xu Chen, Ruiqin Cao, Haifang Liu, Tuanying Zhang, Xinrong Yuan, Shuxiang Xu","doi":"10.3892/ijmm.2024.5348","DOIUrl":"10.3892/ijmm.2024.5348","url":null,"abstract":"<p><p>Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the Transwell invasion assay data shown in Fig. 3A and B on p. 1306 were strikingly similar to data appearing in different form in a paper by different authors at a different research institute that had already been submitted for publication. Owing to the fact that the contentious data in the above article had already been submitted for publication prior to its submission to <i>International Journal of Molecular Medicine</i>, the Editor has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they accepted the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 46: 1301‑1310, 2020; DOI: 10.3892/ijmm.2020.4704].</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10836516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139491402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of the brain‑gut axis on neuroinflammation in cerebral ischemia‑reperfusion injury (Review). 脑-肠轴对脑缺血再灌注损伤中神经炎症的影响(综述)。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-03-01 Epub Date: 2024-02-01 DOI: 10.3892/ijmm.2024.5354
Yifeng Zhang, Hang Yang, Shuai Hou, Yulei Xia, Yan-Qiang Wang
{"title":"Influence of the brain‑gut axis on neuroinflammation in cerebral ischemia‑reperfusion injury (Review).","authors":"Yifeng Zhang, Hang Yang, Shuai Hou, Yulei Xia, Yan-Qiang Wang","doi":"10.3892/ijmm.2024.5354","DOIUrl":"10.3892/ijmm.2024.5354","url":null,"abstract":"<p><p>Stroke, a debilitating cerebrovascular ailment, poses significant threats to human life and health. The intricate interplay between the gut‑brain‑microbiota axis (GBMA) and cerebral ischemia‑reperfusion has increasingly become a focal point of scientific exploration, emerging as a pivotal research avenue in stroke pathophysiology. In the present review, the authors delved into the nexus between the GBMA and neuroinflammation observed post‑stroke. The analysis underscored the pivotal roles of histone deacetylase 3 and neutrophil extracellular traps subsequent to stroke incidents. The influence of gut microbial compositions and their metabolites, notably short‑chain fatty acids and trimethylamine N‑oxide, on neuroinflammatory processes, was further elucidated. The involvement of immune cells, especially regulatory T‑cells, and the intricate signaling cascades including cyclic GMP‑AMP synthase/stimulator of interferon genes/Toll‑like receptor, further emphasized the complex regulatory mechanisms of GBMA in cerebral ischemia/reperfusion injury (CI/RI). Collectively, the present review offered a comprehensive perspective on the metabolic, immune and inflammatory modulations orchestrated by GBMA, augmenting the understanding of its role in neuroinflammation following CI/RI.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10852013/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the emerging landscape of HOX genes in cardiovascular biology, atherosclerosis and beyond (Review). 解密心血管生物学、动脉粥样硬化及其他方面的 HOX 基因新貌(综述)。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-02-01 Epub Date: 2023-12-22 DOI: 10.3892/ijmm.2023.5341
Yu Zhou, Qiang Wu, Yingchu Guo
{"title":"Deciphering the emerging landscape of HOX genes in cardiovascular biology, atherosclerosis and beyond (Review).","authors":"Yu Zhou, Qiang Wu, Yingchu Guo","doi":"10.3892/ijmm.2023.5341","DOIUrl":"10.3892/ijmm.2023.5341","url":null,"abstract":"<p><p>Atherosclerosis, a dominant driving force underlying multiple cardiovascular events, is an intertwined and chronic inflammatory disease characterized by lipid deposition in the arterial wall, which leads to diverse cardiovascular problems. Despite unprecedented advances in understanding the pathogenesis of atherosclerosis and the substantial decline in cardiovascular mortality, atherosclerotic cardiovascular disease remains a global public health issue. Understanding the molecular landscape of atherosclerosis is imperative in the field of molecular cardiology. Recently, compelling evidence has shown that an important family of homeobox (HOX) genes endows causality in orchestrating the interplay between various cardiovascular biological processes and atherosclerosis. Despite seemingly scratching the surface, such insight into the realization of biology promises to yield extraordinary breakthroughs in ameliorating atherosclerosis. Primarily recapitulated herein are the contributions of HOX in atherosclerosis, including diverse cardiovascular biology, knowledge gaps, remaining challenges and future directions. A snapshot of other cardiovascular biological processes was also provided, including cardiac/vascular development, cardiomyocyte pyroptosis/apoptosis, cardiac fibroblast proliferation and cardiac hypertrophy, which are responsible for cardiovascular disorders. Further in‑depth investigation of HOX promises to provide a potential yet challenging landscape, albeit largely undetermined to date, for partially pinpointing the molecular mechanisms of atherosclerosis. A plethora of new targeted therapies may ultimately emerge against atherosclerosis, which is rapidly underway. However, translational undertakings are crucially important but increasingly challenging and remain an ongoing and monumental conundrum in the field.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781420/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138829678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association of endometriosis with Sjögren's syndrome: Genetic insights (Review). 子宫内膜异位症与斯约格伦综合征的关系:遗传学见解(综述)。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-02-01 Epub Date: 2024-01-08 DOI: 10.3892/ijmm.2024.5344
Maria I Zervou, Basil C Tarlatzis, Grigoris F Grimbizis, Demetrios A Spandidos, Timothy B Niewold, George N Goulielmos
{"title":"Association of endometriosis with Sjögren's syndrome: Genetic insights (Review).","authors":"Maria I Zervou, Basil C Tarlatzis, Grigoris F Grimbizis, Demetrios A Spandidos, Timothy B Niewold, George N Goulielmos","doi":"10.3892/ijmm.2024.5344","DOIUrl":"10.3892/ijmm.2024.5344","url":null,"abstract":"<p><p>Patients with a history of endometriosis have an increased risk of developing various autoimmune diseases such as rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis and celiac disease. There is a potential association between endometriosis and an increased susceptibility for Sjögren's syndrome (SS). SS is a common chronic, inflammatory, systemic, autoimmune, multifactorial disease of complex pathology, with genetic, epigenetic and environmental factors contributing to the development of this condition. It occurs in 0.5‑1% of the population, is characterized by the presence of ocular dryness, lymphocytic infiltrations and contributes to neurological, gastrointestinal, vascular and dermatological manifestations. Endometriosis is an inflammatory, estrogen‑dependent, multifactorial, heterogeneous gynecological disease, affecting ≤10% of reproductive‑age women. It is characterized by the occurrence of endometrial tissue outside the uterine cavity, mainly in the pelvic cavity, and is associated with pelvic pain, dysmenorrhea, deep dyspareunia and either subfertility or infertility. It is still unclear whether SS appears as a secondary response to endometriosis, or it is developed due to any potential shared mechanisms of these conditions. The aim of the present review was to explore further the biological basis only of the co‑occurrence of these disorders but not their association at clinical basis, focusing on the analysis of the partially shared genetic background between endometriosis and SS, and the clarification of the possible similarities in the underlying pathogenetic mechanisms and the relevant molecular pathways.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139377558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A mid‑pandemic night's dream: Melatonin, from harbinger of anti‑inflammation to mitochondrial savior in acute and long COVID‑19 (Review) 大流行中期的夜晚之梦:褪黑激素,从抗炎预兆到急性和长期 COVID-19 的线粒体救星(综述)
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-01-26 DOI: 10.3892/ijmm.2024.5352
Ioannis Lempesis, V. Georgakopoulou, Russel Reiter, Demetrios A. Spandidos
{"title":"A mid‑pandemic night's dream: Melatonin, from harbinger of anti‑inflammation to mitochondrial savior in acute and long COVID‑19 (Review)","authors":"Ioannis Lempesis, V. Georgakopoulou, Russel Reiter, Demetrios A. Spandidos","doi":"10.3892/ijmm.2024.5352","DOIUrl":"https://doi.org/10.3892/ijmm.2024.5352","url":null,"abstract":"","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139595010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gab2 promotes the growth of colorectal cancer by regulating the M2 polarization of tumor‑associated macrophages. Gab2通过调节肿瘤相关巨噬细胞的M2极化来促进癌症的生长。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-01-01 Epub Date: 2023-11-08 DOI: 10.3892/ijmm.2023.5327
Xuehan Gao, Runying Long, Ming Qin, Wenfang Zhu, Linna Wei, Pinzhi Dong, Jin Chen, Junmin Luo, Jihong Feng
{"title":"Gab2 promotes the growth of colorectal cancer by regulating the M2 polarization of tumor‑associated macrophages.","authors":"Xuehan Gao, Runying Long, Ming Qin, Wenfang Zhu, Linna Wei, Pinzhi Dong, Jin Chen, Junmin Luo, Jihong Feng","doi":"10.3892/ijmm.2023.5327","DOIUrl":"10.3892/ijmm.2023.5327","url":null,"abstract":"<p><p>Tumor‑associated macrophages (TAMs) are pivotal components in colorectal cancer (CRC) progression, markedly influencing the tumor microenvironment through their polarization into the pro‑inflammatory M1 or pro‑tumorigenic M2 phenotypes. Recent studies have highlighted that the Grb2‑associated binder 2 (Gab2) is a critical gene involved in the development of various types of tumor, including CRC. However, the precise role of Gab2 in mediating TAM polarization remains incompletely elucidated. In the present study, it was discovered that Gab2 was highly expressed within CRC tissue TAMs, and was associated with a poor prognosis of patients with CRC. Functionally, it was identified that the tumor‑conditioned medium (TCM) induced Gab2 expression, facilitating the TAMs towards an M2‑like phenotype polarization. Of note, the suppression of Gab2 expression using shRNA markedly inhibited the TCM‑induced expression of M2‑associated molecules, without affecting M1‑type markers. Furthermore, the xenotransplantation model demonstrated that Gab2 deficiency in TAMs inhibited tumor growth in the mouse model of CRC. Mechanistically, Gab2 induced the M2 polarization of TAMs by regulating the AKT and ERK signaling pathways, promoting CRC growth and metastasis. In summary, the present study study elucidates that decreasing Gab2 expression hinders the transition of TAMs towards the M2 phenotype, thereby suppressing the growth of CRC. The exploration of the regulatory mechanisms of Gab2 in TAM polarization may enhance the current understanding of the core molecular pathways of CRC development and may thus provide a foundation for the development of novel immunotherapeutic strategies targeted against TAMs.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688767/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71481340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single‑cell sequencing, genetics, and epigenetics reveal mesenchymal stem cell senescence in osteoarthritis (Review). 单细胞测序、遗传学和表观遗传学揭示了骨关节炎中的间充质干细胞衰老(综述)。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-01-01 Epub Date: 2023-11-08 DOI: 10.3892/ijmm.2023.5326
Dunyong Tan, Zeqi Huang, Zhe Zhao, Xiaoqiang Chen, Jianquan Liu, Daping Wang, Zhiqin Deng, Wencui Li
{"title":"Single‑cell sequencing, genetics, and epigenetics reveal mesenchymal stem cell senescence in osteoarthritis (Review).","authors":"Dunyong Tan, Zeqi Huang, Zhe Zhao, Xiaoqiang Chen, Jianquan Liu, Daping Wang, Zhiqin Deng, Wencui Li","doi":"10.3892/ijmm.2023.5326","DOIUrl":"10.3892/ijmm.2023.5326","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a chronic joint disease characterized by articular cartilage degeneration, secondary bone hyperplasia, inadequate extracellular matrix synthesis and degeneration of articular cartilage. Mesenchymal stem cells (MSCs) can self‑renew and undergo multidirectional differentiation; they can differentiate into chondrocytes. Aging MSCs have a weakened ability to differentiate, and release various pro‑inflammatory cytokines, which may contribute to OA progression; the other mechanism contributing to OA is epigenetic regulation (for instance, DNA methylation, histone modification and regulation of non‑coding RNA). Owing to the self‑renewal and differentiation ability of MSCs, various MSC‑based exogenous cell therapies have been developed to treat OA. The efficacy of MSC‑based therapy is mainly attributed to cytokines, growth factors and the paracrine effect of exosomes. Recently, extensive studies have been conducted on MSC‑derived exosomes. Exosomes from MSCs can deliver a variety of DNA, RNA, proteins and lipids, thereby facilitating MSC migration and cartilage repair. Therefore, MSC‑derived exosomes are considered a promising therapy for OA. The present review summarized the association between MSC aging and OA in terms of genetics and epigenetics, and characteristics of MSC‑derived exosomes, and the mechanism to alleviate OA cartilage damage.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688769/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71481341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential of olfactory neuroepithelial cells as a model to study schizophrenia: A focus on GPCRs (Review). 嗅觉神经上皮细胞作为研究精神分裂症模型的潜力:关注gpcr(综述)。
IF 5.4 3区 医学
International journal of molecular medicine Pub Date : 2024-01-01 Epub Date: 2023-12-01 DOI: 10.3892/ijmm.2023.5331
Zuly A Sánchez-Florentino, Bianca S Romero-Martínez, Edgar Flores-Soto, Héctor Serrano, Luis M Montaño, Marcela Valdés-Tovar, Eduardo Calixto, Arnoldo Aquino-Gálvez, Germán O López-Riquelme, Ramón Alvarado, Jesús Argueta, Héctor Solís-Chagoyán, Bettina Sommer
{"title":"Potential of olfactory neuroepithelial cells as a model to study schizophrenia: A focus on GPCRs (Review).","authors":"Zuly A Sánchez-Florentino, Bianca S Romero-Martínez, Edgar Flores-Soto, Héctor Serrano, Luis M Montaño, Marcela Valdés-Tovar, Eduardo Calixto, Arnoldo Aquino-Gálvez, Germán O López-Riquelme, Ramón Alvarado, Jesús Argueta, Héctor Solís-Chagoyán, Bettina Sommer","doi":"10.3892/ijmm.2023.5331","DOIUrl":"10.3892/ijmm.2023.5331","url":null,"abstract":"<p><p>Schizophrenia (SZ) is a multifactorial disorder characterized by volume reduction in gray and white matter, oxidative stress, neuroinflammation, altered neurotransmission, as well as molecular deficiencies such as punctual mutation in Disrupted‑in‑Schizophrenia 1 protein. In this regard, it is essential to understand the underlying molecular disturbances to determine the pathophysiological mechanisms of the disease. The signaling pathways activated by G protein‑coupled receptors (GPCRs) are key molecular signaling pathways altered in SZ. Convenient models need to be designed and validated to study these processes and mechanisms at the cellular level. Cultured olfactory stem cells are used to investigate neural molecular and cellular alterations related to the pathophysiology of SZ. Multipotent human olfactory stem cells are undifferentiated and express GPCRs involved in numerous physiological functions such as proliferation, differentiation and bioenergetics. The use of olfactory stem cells obtained from patients with SZ may identify alterations in GPCR signaling that underlie dysfunctional processes in both undifferentiated and specialized neurons or derived neuroglia. The present review aimed to analyze the role of GPCRs and their signaling in the pathophysiology of SZ. Culture of olfactory epithelial cells constitutes a suitable model to study SZ and other psychiatric disorders at the cellular level.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10712696/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138459852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信