心血管和肌肉骨骼系统之间的外泌体介导的串扰:机制和治疗潜力(综述)。

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
International journal of molecular medicine Pub Date : 2025-09-01 Epub Date: 2025-06-27 DOI:10.3892/ijmm.2025.5570
Qingchen Li, Haoyang Gao, Xiaotong Ma, Ze Wang, Linlin Zhao, Weihua Xiao
{"title":"心血管和肌肉骨骼系统之间的外泌体介导的串扰:机制和治疗潜力(综述)。","authors":"Qingchen Li, Haoyang Gao, Xiaotong Ma, Ze Wang, Linlin Zhao, Weihua Xiao","doi":"10.3892/ijmm.2025.5570","DOIUrl":null,"url":null,"abstract":"<p><p>The cardiovascular and musculoskeletal systems are two core systems essential for maintaining human physiological functions and their dynamic interactions play a critical role in overall health. Exosomes, nanosized vesicles released by cells, contain bioactive substances including microRNA, long non‑coding RNA, lipids and proteins and participate in the pathophysiological regulation of multiple organ systems by mediating intercellular communication. Bone‑derived exosomes ameliorate cardiovascular diseases through the regulation of oxidative stress, inflammatory responses and apoptosis. Conversely, cardiovascular‑derived exosomes enhance bone homeostasis by suppressing osteoclast activity or promoting osteogenic differentiation, but they may also exacerbate pathological progression in conditions such as osteoarthritis. Skeletal muscle‑derived exosomes protect cardiomyocytes in muscular dystrophy through functional molecules delivery. However, under pathological conditions such as sarcopenia, skeletal muscle‑derived exosomes may aggravate cardiac dysfunction by activating pro‑apoptotic signals. Similarly, cardiovascular‑derived exosomes exhibit dual roles in skeletal muscle regulation, promoting regeneration while potentially inducing atrophy during heart failure. In addition, exosomes demonstrate significant clinical value as diagnostic biomarkers and targeted drug delivery vehicles, both for early disease detection and regenerative therapies. The present review systematically outlined the mechanisms underlying exosome‑mediated bidirectional crosstalk between the cardiovascular and musculoskeletal systems and explores their clinical application potential. It provided theoretical insights and novel perspectives for further research into the pathogenesis and therapeutic strategies of cardiovascular and musculoskeletal diseases.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"56 3","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236749/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exosome‑mediated crosstalk between the cardiovascular and musculoskeletal systems: Mechanisms and therapeutic potential (Review).\",\"authors\":\"Qingchen Li, Haoyang Gao, Xiaotong Ma, Ze Wang, Linlin Zhao, Weihua Xiao\",\"doi\":\"10.3892/ijmm.2025.5570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cardiovascular and musculoskeletal systems are two core systems essential for maintaining human physiological functions and their dynamic interactions play a critical role in overall health. Exosomes, nanosized vesicles released by cells, contain bioactive substances including microRNA, long non‑coding RNA, lipids and proteins and participate in the pathophysiological regulation of multiple organ systems by mediating intercellular communication. Bone‑derived exosomes ameliorate cardiovascular diseases through the regulation of oxidative stress, inflammatory responses and apoptosis. Conversely, cardiovascular‑derived exosomes enhance bone homeostasis by suppressing osteoclast activity or promoting osteogenic differentiation, but they may also exacerbate pathological progression in conditions such as osteoarthritis. Skeletal muscle‑derived exosomes protect cardiomyocytes in muscular dystrophy through functional molecules delivery. However, under pathological conditions such as sarcopenia, skeletal muscle‑derived exosomes may aggravate cardiac dysfunction by activating pro‑apoptotic signals. Similarly, cardiovascular‑derived exosomes exhibit dual roles in skeletal muscle regulation, promoting regeneration while potentially inducing atrophy during heart failure. In addition, exosomes demonstrate significant clinical value as diagnostic biomarkers and targeted drug delivery vehicles, both for early disease detection and regenerative therapies. The present review systematically outlined the mechanisms underlying exosome‑mediated bidirectional crosstalk between the cardiovascular and musculoskeletal systems and explores their clinical application potential. It provided theoretical insights and novel perspectives for further research into the pathogenesis and therapeutic strategies of cardiovascular and musculoskeletal diseases.</p>\",\"PeriodicalId\":14086,\"journal\":{\"name\":\"International journal of molecular medicine\",\"volume\":\"56 3\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236749/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/ijmm.2025.5570\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2025.5570","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

心血管系统和肌肉骨骼系统是维持人体生理功能的两个核心系统,它们之间的动态相互作用在人体整体健康中起着至关重要的作用。外泌体是细胞释放的纳米级囊泡,含有微RNA、长链非编码RNA、脂质和蛋白质等生物活性物质,通过介导细胞间通讯参与多器官系统的病理生理调节。骨源性外泌体通过调节氧化应激、炎症反应和细胞凋亡改善心血管疾病。相反,心血管来源的外泌体通过抑制破骨细胞活性或促进成骨分化来增强骨稳态,但它们也可能加剧骨关节炎等疾病的病理进展。骨骼肌来源的外泌体通过功能性分子传递保护肌萎缩症中的心肌细胞。然而,在骨骼肌减少症等病理条件下,骨骼肌来源的外泌体可能通过激活促凋亡信号而加重心功能障碍。同样,心血管来源的外泌体在骨骼肌调节中表现出双重作用,促进再生,同时潜在地诱导心力衰竭时的萎缩。此外,外泌体作为诊断生物标志物和靶向药物递送载体,在早期疾病检测和再生治疗中都具有重要的临床价值。本文系统地概述了外泌体介导的心血管和肌肉骨骼系统双向串扰的机制,并探讨了其临床应用潜力。这为进一步研究心血管和肌肉骨骼疾病的发病机制和治疗策略提供了理论见解和新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exosome‑mediated crosstalk between the cardiovascular and musculoskeletal systems: Mechanisms and therapeutic potential (Review).

The cardiovascular and musculoskeletal systems are two core systems essential for maintaining human physiological functions and their dynamic interactions play a critical role in overall health. Exosomes, nanosized vesicles released by cells, contain bioactive substances including microRNA, long non‑coding RNA, lipids and proteins and participate in the pathophysiological regulation of multiple organ systems by mediating intercellular communication. Bone‑derived exosomes ameliorate cardiovascular diseases through the regulation of oxidative stress, inflammatory responses and apoptosis. Conversely, cardiovascular‑derived exosomes enhance bone homeostasis by suppressing osteoclast activity or promoting osteogenic differentiation, but they may also exacerbate pathological progression in conditions such as osteoarthritis. Skeletal muscle‑derived exosomes protect cardiomyocytes in muscular dystrophy through functional molecules delivery. However, under pathological conditions such as sarcopenia, skeletal muscle‑derived exosomes may aggravate cardiac dysfunction by activating pro‑apoptotic signals. Similarly, cardiovascular‑derived exosomes exhibit dual roles in skeletal muscle regulation, promoting regeneration while potentially inducing atrophy during heart failure. In addition, exosomes demonstrate significant clinical value as diagnostic biomarkers and targeted drug delivery vehicles, both for early disease detection and regenerative therapies. The present review systematically outlined the mechanisms underlying exosome‑mediated bidirectional crosstalk between the cardiovascular and musculoskeletal systems and explores their clinical application potential. It provided theoretical insights and novel perspectives for further research into the pathogenesis and therapeutic strategies of cardiovascular and musculoskeletal diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of molecular medicine
International journal of molecular medicine 医学-医学:研究与实验
CiteScore
12.30
自引率
0.00%
发文量
124
审稿时长
3 months
期刊介绍: The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality. The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research. All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信