Lulu Tang, Li Zhang, Shun Yao, Xin Li, Yongfeng Wang, Qian Liu, Jiajia Li, Guorong Wen, Jiaxing An, Hai Jin, Jiaxing Zhu, Biguang Tuo
{"title":"Role of MEX3A in tumorigenesis: Mechanisms, tumor‑specific effects and therapeutic implications (Review).","authors":"Lulu Tang, Li Zhang, Shun Yao, Xin Li, Yongfeng Wang, Qian Liu, Jiajia Li, Guorong Wen, Jiaxing An, Hai Jin, Jiaxing Zhu, Biguang Tuo","doi":"10.3892/ijmm.2025.5579","DOIUrl":null,"url":null,"abstract":"<p><p>Muscle excess 3A (MEX3A), a dual‑function RNA‑binding protein with E3 ubiquitin ligase activity, is a pivotal regulator of tumorigenesis. By modulating mRNA stability, translation and targeted protein degradation, MEX3A orchestrates key oncogenic processes, including tumor stemness maintenance, proliferation, migration and immune evasion. MEX3A is aberrantly expressed in various malignancies, such as colorectal and breast cancer, hepatocellular carcinoma and glioblastoma, where it engages key signaling pathways, including the Wnt/β‑catenin, PI3K/AKT and NF‑κB pathways. Mechanistically, MEX3A directly regulates oncogenic and tumor suppressor transcripts, influencing the cell dynamics within the tumor microenvironment. Furthermore, MEX3A upregulation is associated with a poor prognosis and therapy resistance, highlighting its potential as a prognostic biomarker and therapeutic target. The present review aimed to summarize the molecular functions, tumor‑specific roles and translational relevance of MEX3A, bridging the gap between mechanistic insight and clinical applications. Future studies exploring MEX3A‑targeted interventions may reveal novel strategies for precision oncology.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"56 3","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12270390/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2025.5579","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Muscle excess 3A (MEX3A), a dual‑function RNA‑binding protein with E3 ubiquitin ligase activity, is a pivotal regulator of tumorigenesis. By modulating mRNA stability, translation and targeted protein degradation, MEX3A orchestrates key oncogenic processes, including tumor stemness maintenance, proliferation, migration and immune evasion. MEX3A is aberrantly expressed in various malignancies, such as colorectal and breast cancer, hepatocellular carcinoma and glioblastoma, where it engages key signaling pathways, including the Wnt/β‑catenin, PI3K/AKT and NF‑κB pathways. Mechanistically, MEX3A directly regulates oncogenic and tumor suppressor transcripts, influencing the cell dynamics within the tumor microenvironment. Furthermore, MEX3A upregulation is associated with a poor prognosis and therapy resistance, highlighting its potential as a prognostic biomarker and therapeutic target. The present review aimed to summarize the molecular functions, tumor‑specific roles and translational relevance of MEX3A, bridging the gap between mechanistic insight and clinical applications. Future studies exploring MEX3A‑targeted interventions may reveal novel strategies for precision oncology.
期刊介绍:
The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality.
The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research.
All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.