International journal of molecular medicine最新文献

筛选
英文 中文
Transcriptomics and proteomics characterizing the antioxidant mechanisms of semaglutide in diabetic mice with cognitive impairment.
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2025-04-01 Epub Date: 2025-01-31 DOI: 10.3892/ijmm.2025.5497
Ying Yang, Lulu Song, Liping Yu, Jinping Zhang, Bo Zhang
{"title":"Transcriptomics and proteomics characterizing the antioxidant mechanisms of semaglutide in diabetic mice with cognitive impairment.","authors":"Ying Yang, Lulu Song, Liping Yu, Jinping Zhang, Bo Zhang","doi":"10.3892/ijmm.2025.5497","DOIUrl":"10.3892/ijmm.2025.5497","url":null,"abstract":"<p><p>The aim of the present study was to investigate the neuroprotective effects of semaglutide in diabetes‑associated cognitive decline (DACD), while also exploring the underlying mechanisms targeting anti‑oxidative effects. The present study evaluated the antioxidant properties of semaglutide using a DACD model of inflammation. To investigate the underlying mechanisms, omics technologies were employed. Comprehensive transcriptomic and proteomic analysis of the cells was conducted to identify the pathways responsible for the observed antioxidant effects. Semaglutide demonstrated the potential to enhance learning and memory functions while mitigating hippocampal pathological damage. RNA‑sequencing and data‑independent acquisition proteomics analyses identified 13,511 differentially expressed genes and 588 differentially expressed proteins between the control and type 2 diabetes mellitus (T2DM) groups. In addition, 1,378 genes and 2,394 proteins exhibited a differential expression between the T2DM and semaglutide (10 µg/kg) treatment groups. A combined transcriptomic and proteomic analysis unveiled 40 common pathways. Acyl‑CoA oxidase 1 (ACOX1) was observed to be activated during oxidative stress and subsequently suppressed by semaglutide. Of note, the antioxidant and anti‑apoptotic properties of semaglutide in high glucose (HG) conditions were partially reversed upon ACOX1 overexpression. Overall, the present data provided molecular evidence to elucidate the physiological connections between semaglutide and neuronal function, and contribute to clarifying the role of semaglutide in combating oxidative stress and HG‑induced cognitive impairment.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 4","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11819768/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
p23 protects against ferroptosis of brain microvascular endothelial cells in ischemic stroke.
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2025-04-01 Epub Date: 2025-02-21 DOI: 10.3892/ijmm.2025.5505
Yao Zhao, Yunfei Xu, Qing Xu, Nina He, Jie Zhao, Ying Liu
{"title":"p23 protects against ferroptosis of brain microvascular endothelial cells in ischemic stroke.","authors":"Yao Zhao, Yunfei Xu, Qing Xu, Nina He, Jie Zhao, Ying Liu","doi":"10.3892/ijmm.2025.5505","DOIUrl":"10.3892/ijmm.2025.5505","url":null,"abstract":"<p><p>Ferroptosis is a type of iron‑dependent regulated cell death that differs from apoptosis, autophagy or necrosis. p23 serves as a co‑chaperone and performs a unique biological function in various diseases by binding to client proteins to modulate their biological functions; however, its effect on ferroptosis remains largely unknown. In the present study, the effects of cerebral ischemia/reperfusion (I/R) injury (CIRI) or oxygen‑glucose deprivation/reoxygenation on the blood‑brain barrier (BBB) and ferroptosis in brain microvascular endothelial cells (BMECs), as well as the expression of p23, were examined. Subsequently, the effects of p23 on CIRI‑induced BBB dysfunction and BMEC ferroptosis were determined. Finally, the role of glutathione peroxidase 4 (GPX4) in the regulatory effects of p23 on ferroptosis was detected. The results revealed that p23 protected against BBB injury caused by CIRI by inhibiting ferroptosis in BMECs. The effect of p23 on ferroptosis was then explored, and it was found that the expression of GPX4, a major regulator of ferroptosis, was promoted by p23. Furthermore, molecular docking and co‑immunoprecipitation experiments revealed that p23 could bind to GPX4 through its N‑terminal domain (1‑90aa), enhance the stability of GPX4 and inhibit the degradation of GPX4 by cycloheximide. Finally, a cerebral I/R animal model was established using GPX4 conditional knockout mice (GPX4 Fos<sup>CreERT2/+</sup>), and it was revealed that the protective effect of p23 overexpression on the BBB in GPX4 Fos<sup>CreERT2/+</sup> mice was attenuated compared with that in GPX4 Fos<sup>CreERT2/‑</sup> mice. In conclusion, p23 may serve a protective role against cerebral I/R‑induced BBB injury by inhibiting ferroptosis in BMECs through enhancing the stability of GPX4, providing a potential therapeutic target for ischemic stroke.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 4","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878478/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143468150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel and promising therapeutic approach for treating pancreatic cancer: Nectin‑4‑targeted antibody‑drug conjugates alone or combined with autophagy inhibitors.
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2025-04-01 Epub Date: 2025-02-28 DOI: 10.3892/ijmm.2025.5507
Rong Fu, Chunbin Wang, Tongjin Yin, Xuyao Zhang, Ying Xu, Yue Shi, Jing Xu, Wei Zhang, Zhe Ding
{"title":"A novel and promising therapeutic approach for treating pancreatic cancer: Nectin‑4‑targeted antibody‑drug conjugates alone or combined with autophagy inhibitors.","authors":"Rong Fu, Chunbin Wang, Tongjin Yin, Xuyao Zhang, Ying Xu, Yue Shi, Jing Xu, Wei Zhang, Zhe Ding","doi":"10.3892/ijmm.2025.5507","DOIUrl":"10.3892/ijmm.2025.5507","url":null,"abstract":"<p><p>Antibody‑drug conjugates (ADCs) are rapidly advancing the treatment of solid tumors, and Nectin‑4‑targeted ADCs have been approved by the FDA to treat certain cancers. Although Nectin‑4 is overexpressed in the tissues of patients with pancreatic cancer, whether Nectin‑4‑targeted ADCs can effectively treat pancreatic cancer remains unclear. The present study evaluated the therapeutic effects and mechanisms of Nectin‑4‑targeted ADCs in pancreatic cancer. A Nectin‑4‑directed ADC was chosen, Nectin‑4‑MMAE, which triggered apoptosis and induced cell death in the Nectin‑4‑positive pancreatic cancer cell lines BxPC‑3 and YAPC. Nectin‑4‑MMAE also induced autophagy in BxPC‑3 and YAPC cells by inactivating the AKT/mTOR pathway. The entire autophagy process was observed by electron microscopy and laser confocal microscopy. The autophagy inhibitors LY294002 and chloroquine significantly increased the lethal effects of Nectin‑4‑MMAE on BxPC‑3 and YAPC cells by inducing apoptosis. In the xenograft tumor model, Nectin‑4‑MMAE alone elicited potent antitumor effects. When Nectin‑4‑MMAE was combined with autophagy inhibitors, the tumor burden of mice was decreased compared with treatment with either drug alone. The present study confirmed the potent therapeutic effects of Nectin‑4‑MMAE against pancreatic cancer, and its unique antitumor mechanism provides new approaches to treatment.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 4","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875723/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remimazolam alleviates myocardial ischemia/reperfusion injury and inflammation via inhibition of the NLRP3/IL‑1β pathway in mice.
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2025-04-01 Epub Date: 2025-01-31 DOI: 10.3892/ijmm.2025.5498
Xueru Liu, Guojing Shui, Yan Wang, Tangting Chen, Peng Zhang, Li Liu, Chunhong Li, Tao Li, Xiaobin Wang
{"title":"Remimazolam alleviates myocardial ischemia/reperfusion injury and inflammation via inhibition of the NLRP3/IL‑1β pathway in mice.","authors":"Xueru Liu, Guojing Shui, Yan Wang, Tangting Chen, Peng Zhang, Li Liu, Chunhong Li, Tao Li, Xiaobin Wang","doi":"10.3892/ijmm.2025.5498","DOIUrl":"10.3892/ijmm.2025.5498","url":null,"abstract":"<p><p>Remimazolam (Rema) is a novel anesthetic that is widely used in anesthesia and sedation in critically ill patients. Notably, Rema exerts effects in patients through activation of the γ‑aminobutyric acid (GABA) receptor. GABA may alleviate myocardial ischemia/reperfusion (I/R) injury; however, the impact of Rema and underlying molecular mechanism in myocardial I/R injury remain to be fully understood. Therefore, the present study aimed to investigate the effects of Rema on cardiac I/R injury and to determine the underlying mechanisms. An acute myocardial I/R model was established by ligating the left anterior descending artery in adult male C57BL/6 mice (8‑10 weeks). Cultured Raw264.7 cells treated with lipopolysaccharide (LPS) were also used to investigate the effect of Rema on macrophages. The results of the present study revealed that Rema improved I/R‑induced cardiac dysfunction by increasing the ejection fraction value and reducing the myocardial infarction area. In addition, Rema also alleviated I/R‑induced cardiac inflammatory cell infiltration based on H&E and immunofluorescence staining. Transmission electron microscopy and ROS measurements showed that Rema improved I/R‑induced mitochondrial structural disruption and oxidative stress in cardiomyocytes. Transcriptomics analysis and reverse transcription‑quantitative PCR revealed that Rema alleviated I/R‑induced release of inflammatory factors and cytokines by inhibiting the expression of IL‑1β, IL‑6, C‑C chemokine receptor 2 and C‑X‑C motif chemokine ligand 5. Rema also inhibited I/R‑induced CD68+ cell proliferation, IL‑1β release, and NOD‑like receptor thermal protein domain associated protein 3 (NLRP3) and IL‑1β expression. The results of <i>in vitro</i> assays revealed that Rema inhibited LPS‑induced increases in IL‑1β, IL‑6 and TNF‑α expression and release in cultured RAW264.7 macrophages. In conclusion, the present study revealed that Rema may alleviate I/R‑induced cardiac dysfunction and myocardial injury by inhibiting oxidative stress and inflammatory responses via the NLRP3/IL‑1β pathway.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 4","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11819765/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The off‑target effect of loratadine triggers autophagy‑mediated apoptosis in lung adenocarcinoma cells by deactivating JNK, p38, and STAT3 signaling through both PP2A‑dependent and independent pathways.
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2025-04-01 Epub Date: 2025-01-31 DOI: 10.3892/ijmm.2025.5495
Ming-Hsien Chien, Wen-Yueh Hung, Tsung-Ching Lai, Ching Han Tsai, Kai-Ling Lee, Feng-Koo Hsieh, Wei-Jiunn Lee, Jer-Hwa Chang
{"title":"The off‑target effect of loratadine triggers autophagy‑mediated apoptosis in lung adenocarcinoma cells by deactivating JNK, p38, and STAT3 signaling through both PP2A‑dependent and independent pathways.","authors":"Ming-Hsien Chien, Wen-Yueh Hung, Tsung-Ching Lai, Ching Han Tsai, Kai-Ling Lee, Feng-Koo Hsieh, Wei-Jiunn Lee, Jer-Hwa Chang","doi":"10.3892/ijmm.2025.5495","DOIUrl":"10.3892/ijmm.2025.5495","url":null,"abstract":"<p><p>Lung adenocarcinoma (LUAD) is a typical inflammation‑associated cancer, and anti‑inflammatory medications can be valuable in cancer therapy. Loratadine, a histamine receptor H1 (HRH1) antagonist, shows both anti‑inflammatory and anticancer properties. The present study aimed to evaluate impacts of loratadine on LUAD cells as well as in a LUAD xenograft mouse model, and explore underlying mechanisms. Mechanistic investigations were conducted through using western blotting, flow cytometry, immunohistochemistry, acridine orange staining, TUNEL assays, and <i>in silico</i> analyses of loratadine‑modulated genes in LUAD specimens. It was observed that loratadine inhibited LUAD cell proliferation and colony formation by inducing autophagy‑mediated apoptotic cell death independently of HRH1. In a LUAD xenograft model, loratadine decreased tumor proliferation and angiogenesis while enhancing autophagy and apoptosis. Mechanistically, loratadine induced protein phosphatase 2A (PP2A) activation to deactivate c‑Jun N‑terminal kinase (JNK)1/2 and p38 in H23 and PC9 LUAD cells. Additionally, loratadine inhibited signal transducer and activator of transcription 3 (STAT3) activation via a PP2A‑independent pathway. Furthermore, the combination of loratadine with inhibitors for JNK, p38 and STAT3 all enhanced proliferation inhibition of loratadine alone in both cell lines. In the clinic, patients with LUAD expressing high PP2A had favorable prognoses. The present study suggests that loratadine can be used as a PP2A activator for LUAD treatment, and the combination of repurposing loratadine with inhibitors of STAT3, JNK and p38 would be an effectively strategy for inhibiting LUAD growth.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 4","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11819771/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of autophagy in fibrosis: Mechanisms, progression and therapeutic potential (Review).
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2025-04-01 Epub Date: 2025-02-14 DOI: 10.3892/ijmm.2025.5502
Yongxin Chen, Zhuanghui Wang, Qinghong Ma, Chao Sun
{"title":"The role of autophagy in fibrosis: Mechanisms, progression and therapeutic potential (Review).","authors":"Yongxin Chen, Zhuanghui Wang, Qinghong Ma, Chao Sun","doi":"10.3892/ijmm.2025.5502","DOIUrl":"10.3892/ijmm.2025.5502","url":null,"abstract":"<p><p>Various forms of tissue damage can lead to fibrosis, an abnormal reparative reaction. In the industrialized countries, 45% of deaths are attributable to fibrotic disorders. Autophagy is a highly preserved process. Lysosomes break down organelles and cytoplasmic components during autophagy. The cytoplasm is cleared of pathogens and dysfunctional organelles, and its constituent components are recycled. With the growing body of research on autophagy, it is becoming clear that autophagy and its associated mechanisms may have a role in the development of numerous fibrotic disorders. However, a comprehensive understanding of autophagy in fibrosis is still lacking and the progression of fibrotic disease has not yet been thoroughly investigated in relation to autophagy‑associated processes. The present review focused on the latest findings and most comprehensive understanding of macrophage autophagy, endoplasmic reticulum stress‑mediated autophagy and autophagy‑mediated endothelial‑to‑mesenchymal transition in the initiation, progression and treatment of fibrosis. The article also discusses treatment strategies for fibrotic diseases and highlights recent developments in autophagy‑targeted therapies.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 4","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878481/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143413238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liriodendrin alleviates myocardial ischemia‑reperfusion injury via partially attenuating apoptosis, inflammation and mitochondria damage in rats.
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2025-04-01 Epub Date: 2025-02-21 DOI: 10.3892/ijmm.2025.5506
Bo Li, Wei-Wei Yang, Bo-Chen Yao, Qing-Liang Chen, Li-Li Zhao, Yan-Qiu Song, Nan Jiang, Zhi-Gang Guo
{"title":"Liriodendrin alleviates myocardial ischemia‑reperfusion injury via partially attenuating apoptosis, inflammation and mitochondria damage in rats.","authors":"Bo Li, Wei-Wei Yang, Bo-Chen Yao, Qing-Liang Chen, Li-Li Zhao, Yan-Qiu Song, Nan Jiang, Zhi-Gang Guo","doi":"10.3892/ijmm.2025.5506","DOIUrl":"10.3892/ijmm.2025.5506","url":null,"abstract":"<p><p>Myocardial ischemia‑reperfusion (I/R) injury may lead to dysfunction of signaling pathways related to cell apoptosis, inflammation, oxidative stress, and mitochondrial damage. The present study investigated the defensive effect of liriodendrin, as a natural product isolated from <i>Linaria vulgaris</i>, on reperfusion injury in rats and the underlying mechanisms involved in this process. An <i>in vivo</i> rat model of I/R constructed by ligation of the left anterior descending artery, as well as an <i>in vitro</i> model using H9C2 cells under hypoxic conditions, was established to assess the cardioprotective effects of liriodendrin. The biomarkers of myocardial damage, oxidative stress, and inflammatory response were measured with enzyme‑linked immunosorbent assay (ELISA). Gene and protein expression were detected by reverse transcription‑quantitative PCR (RT‑qPCR) and western blotting. Mitochondrial morphology was observed by electron microscopy. The levels of creatine kinase isoenzymes and cardiac troponin T were significantly elevated in the I/R compared with the sham group; liriodendrin mitigated this elevation. The liriodendrin group exhibited a significant reduction in myocardial tissue apoptosis, as indicated by immunohistochemical staining and western blotting. Additionally, ELISA indicated that the I/R group had higher levels of reactive oxygen species (ROS) compared with the liriodendrin group, while the liriodendrin group had higher levels of superoxide dismutase. The <i>in vitro</i> experiments demonstrated that liriodendrin ameliorated hypoxia‑induced injury to mitochondria and suppressed the activation of nuclear factor-κB and B-cell lymphoma-2 associated X protein (Bax). Therefore, the present study demonstrated that liriodendrin impeded ROS‑associated metabolic disorders, maintained mitochondrial homeostasis and partially alleviated cardiomyocyte apoptosis by inhibiting the Bax signaling pathway.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 4","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875722/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143468234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
miR‑100: A key tumor suppressor regulatory factor in human malignant tumors (Review).
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2025-04-01 Epub Date: 2025-02-28 DOI: 10.3892/ijmm.2025.5508
Liang Zhang, Jiuling Zhang, Xue Zhang, Shuang Liu, Chunyu Qi, Shengyu Gao
{"title":"miR‑100: A key tumor suppressor regulatory factor in human malignant tumors (Review).","authors":"Liang Zhang, Jiuling Zhang, Xue Zhang, Shuang Liu, Chunyu Qi, Shengyu Gao","doi":"10.3892/ijmm.2025.5508","DOIUrl":"10.3892/ijmm.2025.5508","url":null,"abstract":"<p><p>MicroRNA (miRNA/miR)‑100 is a crucial tumor‑suppressive miRNA that serves a pivotal role in the initiation and progression of various malignancies. miR‑100 regulates cancer cell proliferation, migration, invasion and apoptosis by targeting oncogenes, and acts as a molecular sponge to regulate long non‑coding RNAs and circular RNAs, thereby influencing processes such as glycolysis, autophagy and resistance to chemotherapy/radiotherapy. Furthermore, miR‑100 suppresses tumor progression by modulating key signaling pathways, including the PI3K/AKT and Wnt/β‑catenin signaling pathways. miR‑100 exhibits potential for early cancer diagnosis, particularly in cancer types such as gastric and lung cancer, where it can serve as a non‑invasive biomarker for early screening. As a therapeutic target, restoring miR‑100 expression can enhance the efficacy of chemotherapy or targeted therapy, thereby improving patient prognosis. Although challenges remain in its clinical application, including delivery systems and safety concerns, ongoing research suggests that miR‑100 holds promise for personalized treatment and early diagnosis. Given that cancer remains a global health challenge, research on miR‑100 provides hope for cancer therapy, particularly in China, where the mortality rates of malignancies such as gastric, lung and liver cancer continue to rise, further emphasizing its potential for clinical translation.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 4","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875724/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alda‑1 restores ALDH2‑mediated alcohol metabolism to inhibit the NF‑κB/VEGFC axis in head and neck cancer.
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2025-04-01 Epub Date: 2025-01-31 DOI: 10.3892/ijmm.2025.5496
Yu-Hsuan Lin, Yi-Chen Lee, Jia-Bin Liao, Pei-Lun Yu, Chih-Yu Chou, Yi-Fang Yang
{"title":"Alda‑1 restores ALDH2‑mediated alcohol metabolism to inhibit the NF‑κB/VEGFC axis in head and neck cancer.","authors":"Yu-Hsuan Lin, Yi-Chen Lee, Jia-Bin Liao, Pei-Lun Yu, Chih-Yu Chou, Yi-Fang Yang","doi":"10.3892/ijmm.2025.5496","DOIUrl":"10.3892/ijmm.2025.5496","url":null,"abstract":"<p><p>The adaptation of cancer cells to hostile environments often necessitates metabolic pathway alterations to sustain proliferation and invasion. Head and neck cancer (HNC) has unfavorable outcomes. Therefore, elucidating the functional effects and molecular mechanisms underlying metabolic changes is key. Ingenuity Pathway Analysis identified 'ethanol degradation pathway II and IV' was consistently downregulated in tumor tissue, with aldehyde dehydrogenase 2 (<i>ALDH2</i>) emerging as a key prognostic gene among the top‑ranked differentially expressed metabolic pathways. Immunohistochemistry (IHC) of HNC specimens revealed significant downregulation of ALDH2 expression in tumor tissue, which was inversely correlated with T classification, overall stage, recurrence rate and independently predicted poor prognosis. Functional assays showed that ALDH2 knockdown enhanced HNC cell migration, invasion and colony formation, while ALDH2 overexpression attenuated these processes. Mechanistically, ALDH2 downregulation and subsequent reactive oxygen species (ROS) production in cells activated NF‑κB, upregulating vascular endothelial growth factor C (<i>VEGFC</i>) expression. ALDH2 overexpression inhibited ROS production and the NF‑κB/VEGFC oncogenic pathway, with pharmacological inhibition of NF‑κB and VEGFC mitigating the enhanced migration and invasion of ALDH2‑knockdown HNC cells. IHC and transcriptome analysis further highlighted an inverse association between ALDH2 and VEGFC, with the ALDH2<sup>high</sup>/VEGFC<sup>low</sup> profile predicting the most favorable survival outcome. Inhibition of ALDH2 with Daidzin increased <i>VEGFC</i> and phosphorylated NF‑κB levels, restoring the migration and invasion of ALDH2‑overexpressing HNC cells by enhancing the effects of VEGFC. Notably, modulating ALDH2 activity using Alda‑1 ameliorated NF‑kB/VEGFC axis upregulation following acetaldehyde treatment, aligning with the aforementioned alterations in alcohol metabolisms. These findings emphasize the key role of ALDH2 in influencing HNC progression and patient outcome, suggesting that targeting the ALDH2/NF‑κB/VEGFC pathway may represent a potential therapeutic strategy for HNC.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 4","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11819766/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The molecular mechanisms underlying retinal ganglion cell apoptosis and optic nerve regeneration in glaucoma (Review).
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2025-04-01 Epub Date: 2025-02-14 DOI: 10.3892/ijmm.2025.5504
Xiaotong Wang, Liang Sun, Xudong Han, Zhanglong Li, Yuqing Xing, Xinyue Chen, Ruofan Xi, Yuecong Sun, Guilong Wang, Ping Zhao
{"title":"The molecular mechanisms underlying retinal ganglion cell apoptosis and optic nerve regeneration in glaucoma (Review).","authors":"Xiaotong Wang, Liang Sun, Xudong Han, Zhanglong Li, Yuqing Xing, Xinyue Chen, Ruofan Xi, Yuecong Sun, Guilong Wang, Ping Zhao","doi":"10.3892/ijmm.2025.5504","DOIUrl":"10.3892/ijmm.2025.5504","url":null,"abstract":"<p><p>Glaucoma is a neurodegenerative disease characterized by progressive and irreversible necrosis and apoptosis of retinal ganglion cells (RGCs). Deformation of the lamina cribrosa (LC) has been identified as a factor leading to damage to the optic nerve and capillaries passing through the LC, ultimately causing visual field defects and glaucoma development. Recent advancements in molecular biology, both domestically and internationally, have enabled a more comprehensive and in‑depth understanding of glaucoma pathogenesis. In the present review, the role of molecular signaling pathways associated with RGCs apoptosis, optic nerve protection and regeneration, and LC damage and remodeling in the development of glaucoma, are summarized and discussed. The insights provided herein may offer new targets and ideas for interventions and treatment strategies for glaucoma.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 4","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878485/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143413230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信