{"title":"纳米体CAR - T在肿瘤免疫治疗中的应用(综述)。","authors":"Hongjing Liu, Xueping Liu, Xuyan Zhou, Siliang Duan, Xin Huang, Hongxin Fei, Yali Kou","doi":"10.3892/ijmm.2025.5628","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T cell therapy is a type of cellular immunotherapy showing promising clinical effectiveness and high precision. CAR‑T cells express membrane receptors with high specificity, which enable them to identify certain target antigens generated by cancerous cells. The three primary structural elements of the CAR are the extracellular domain, transmembrane domain and cytoplasmic domain. Nanobodies are a type of antibody fragment derived from the variable domains of camelid heavy chain antibodies (VHH), which are the antigen‑specific binding domains. They have high clinical applicability due to their tiny size, excellent target affinity, adaptable functions and guaranteed stability. Structurally pre‑designed nanobodies were transduced in primary T lymphocytes, forming CAR‑T cells and these have been demonstrated to have inhibitory effects on hematologic malignancy or solid tumor cells/tissues both <i>in vivo</i> and <i>in vitro</i>. At present, a number of novel nanobody‑based modalities can include a single nanobody, a bi‑valent nanobody and multivalent nanobody CAR‑T cells with bispecific and multispecific characteristics, showing promising therapeutic efficacy that is similar to CAR‑T cells modulated with a single‑chain variable fragment. Intriguingly, CAR‑T cells targeting the B‑cell maturation antigen modified using an anti‑B‑cell maturation antigen single nanobody or bivalent nanobody have been shown to exhibit clinical efficacy comparable to scFv‑modulated CAR‑T cells. The application of nanobodies in CAR‑T therapy has been well established from laboratory‑based evidence to clinical application and they have great potential for developing advanced CAR‑T cells for more complex employment.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"56 5","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12440277/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of nanobody‑based CAR‑T in tumor immunotherapy (Review).\",\"authors\":\"Hongjing Liu, Xueping Liu, Xuyan Zhou, Siliang Duan, Xin Huang, Hongxin Fei, Yali Kou\",\"doi\":\"10.3892/ijmm.2025.5628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chimeric antigen receptor (CAR) T cell therapy is a type of cellular immunotherapy showing promising clinical effectiveness and high precision. CAR‑T cells express membrane receptors with high specificity, which enable them to identify certain target antigens generated by cancerous cells. The three primary structural elements of the CAR are the extracellular domain, transmembrane domain and cytoplasmic domain. Nanobodies are a type of antibody fragment derived from the variable domains of camelid heavy chain antibodies (VHH), which are the antigen‑specific binding domains. They have high clinical applicability due to their tiny size, excellent target affinity, adaptable functions and guaranteed stability. Structurally pre‑designed nanobodies were transduced in primary T lymphocytes, forming CAR‑T cells and these have been demonstrated to have inhibitory effects on hematologic malignancy or solid tumor cells/tissues both <i>in vivo</i> and <i>in vitro</i>. At present, a number of novel nanobody‑based modalities can include a single nanobody, a bi‑valent nanobody and multivalent nanobody CAR‑T cells with bispecific and multispecific characteristics, showing promising therapeutic efficacy that is similar to CAR‑T cells modulated with a single‑chain variable fragment. Intriguingly, CAR‑T cells targeting the B‑cell maturation antigen modified using an anti‑B‑cell maturation antigen single nanobody or bivalent nanobody have been shown to exhibit clinical efficacy comparable to scFv‑modulated CAR‑T cells. The application of nanobodies in CAR‑T therapy has been well established from laboratory‑based evidence to clinical application and they have great potential for developing advanced CAR‑T cells for more complex employment.</p>\",\"PeriodicalId\":14086,\"journal\":{\"name\":\"International journal of molecular medicine\",\"volume\":\"56 5\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12440277/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/ijmm.2025.5628\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2025.5628","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Application of nanobody‑based CAR‑T in tumor immunotherapy (Review).
Chimeric antigen receptor (CAR) T cell therapy is a type of cellular immunotherapy showing promising clinical effectiveness and high precision. CAR‑T cells express membrane receptors with high specificity, which enable them to identify certain target antigens generated by cancerous cells. The three primary structural elements of the CAR are the extracellular domain, transmembrane domain and cytoplasmic domain. Nanobodies are a type of antibody fragment derived from the variable domains of camelid heavy chain antibodies (VHH), which are the antigen‑specific binding domains. They have high clinical applicability due to their tiny size, excellent target affinity, adaptable functions and guaranteed stability. Structurally pre‑designed nanobodies were transduced in primary T lymphocytes, forming CAR‑T cells and these have been demonstrated to have inhibitory effects on hematologic malignancy or solid tumor cells/tissues both in vivo and in vitro. At present, a number of novel nanobody‑based modalities can include a single nanobody, a bi‑valent nanobody and multivalent nanobody CAR‑T cells with bispecific and multispecific characteristics, showing promising therapeutic efficacy that is similar to CAR‑T cells modulated with a single‑chain variable fragment. Intriguingly, CAR‑T cells targeting the B‑cell maturation antigen modified using an anti‑B‑cell maturation antigen single nanobody or bivalent nanobody have been shown to exhibit clinical efficacy comparable to scFv‑modulated CAR‑T cells. The application of nanobodies in CAR‑T therapy has been well established from laboratory‑based evidence to clinical application and they have great potential for developing advanced CAR‑T cells for more complex employment.
期刊介绍:
The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality.
The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research.
All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.