International journal of molecular medicine最新文献

筛选
英文 中文
Salusin‑α alleviates lipid metabolism disorders via regulation of the downstream lipogenesis genes through the LKB1/AMPK pathway. Salusin-α 通过 LKB1/AMPK 通路调节下游脂肪生成基因,从而缓解脂质代谢紊乱。
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-09-01 Epub Date: 2024-07-04 DOI: 10.3892/ijmm.2024.5397
Jintong Pan, Chao Yang, Aohong Xu, Huan Zhang, Ye Fan, Rong Zeng, Lin Chen, Xiang Liu, Yuxue Wang
{"title":"Salusin‑α alleviates lipid metabolism disorders via regulation of the downstream lipogenesis genes through the LKB1/AMPK pathway.","authors":"Jintong Pan, Chao Yang, Aohong Xu, Huan Zhang, Ye Fan, Rong Zeng, Lin Chen, Xiang Liu, Yuxue Wang","doi":"10.3892/ijmm.2024.5397","DOIUrl":"10.3892/ijmm.2024.5397","url":null,"abstract":"<p><p>Lipid metabolism disorders are a major cause of several chronic metabolic diseases which seriously affect public health. Salusin‑α, a vasoactive peptide, has been shown to attenuate lipid metabolism disorders, although its mechanism of action has not been reported. To investigate the effects and potential mechanisms of Salusin‑α on lipid metabolism, Salusin‑α was overexpressed or knocked down using lentiviral vectors. Hepatocyte steatosis was induced by free fatty acid (FFA) after lentiviral transfection into HepG2 cells. The degree of lipid accumulation was assessed using Oil Red O staining and by measuring several biochemical indices. Subsequently, bioinformatics was used to analyze the signaling pathways that may have been involved in lipid metabolism disorders. Finally, semi‑quantitative PCR and western blotting were used to verify the involvement of the liver kinase B1 (LKB1)/AMPK pathway. Compound C, an inhibitor of AMPK, was used to confirm this mechanism's involvement further. The results showed that Salusin‑α significantly attenuated lipid accumulation, inflammation and oxidative stress. In addition, Salusin‑α increased the levels of LKB1 and AMPK, which inhibited the expression of sterol regulatory element binding protein‑1c, fatty acid synthase and acetyl‑CoA carboxylase. The addition of Compound C abrogated the Salusin‑α‑mediated regulation of AMPK on downstream signaling molecules. In summary, overexpression of Salusin‑α activated the LKB1/AMPK pathway, which in turn inhibited lipid accumulation in HepG2 cells. This provides insights into the potential mechanism underlying the mechanism by which Salusin‑α ameliorates lipid metabolism disorders while identifying a potential therapeutic target.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Corrigendum] All‑trans retinoic acid alters the expression of the tight junction proteins Claudin‑1 and ‑4 and epidermal barrier function‑associated genes in the epidermis. [更正] 全反式维甲酸会改变表皮中紧密连接蛋白 Claudin-1 和 -4 以及表皮屏障功能相关基因的表达。
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-09-01 Epub Date: 2024-07-12 DOI: 10.3892/ijmm.2024.5399
Jing Li, Qianying Li, Songmei Geng
{"title":"[Corrigendum] All‑<i>trans</i> retinoic acid alters the expression of the tight junction proteins Claudin‑1 and ‑4 and epidermal barrier function‑associated genes in the epidermis.","authors":"Jing Li, Qianying Li, Songmei Geng","doi":"10.3892/ijmm.2024.5399","DOIUrl":"10.3892/ijmm.2024.5399","url":null,"abstract":"<p><p>Following the publication of the above article, the authors contacted the Editorial Office to explain that they had identified a pair of duplicate images in the control (Vehicle) group of mouse images in Fig. 1A on p. 1792. Specifically, the same image (corresponding correctly to the 'Day 5' experiment) was inadvertently chosen to represent the cutaneous manifestations of mice in the Vehicle group on 'Day 3' and 'Day 5' in Fig. 1A. This error arose as a consequence of repetitive application and duplication procedures within the image set, resulting in the inadvertent reuse of the same photo. Additionally, due to minimal alterations observed in the skin condition of mice from the control group following treatment, each mouse exhibited a similar appearance; this similarity further contributed to the delayed identification of this error during the paper revision stage. Consequently, this duplication of the same image was made as a result of insufficient scrutiny. The revised version of Fig. 1, showing the correct image for the 'Day 3' experiment in Fig. 1A, is shown on the next page. The authors can confirm that the error associated with the assembly of this figure did not have any significant impact on either the results or the conclusions reported in this study, and all the authors agree with the publication of this Corrigendum. The authors are grateful to the Editor of <i>International Journal of Molecular Medicine</i> for allowing them the opportunity to publish this; furthermore, they apologize to the readership of the Journal for any inconvenience caused. [International Journal of Molecular Medicine 43: 1789‑1805, 2019; DOI: 10.3892/ijmm.2019.4098].</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved efficacy of cisplatin delivery by peanut agglutinin‑modified liposomes in non‑small cell lung cancer. 用花生凝集素修饰的脂质体提高顺铂在非小细胞肺癌中的给药疗效
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-08-01 Epub Date: 2024-07-04 DOI: 10.3892/ijmm.2024.5394
Ben Yang, Rongguan Kou, Hui Wang, Anping Wang, Lili Wang, Sipeng Sun, Mengqi Shi, Shouzhen Zhao, Yubing Wang, Yi Wang, Jingliang Wu, Fei Wu, Fan Yang, Meihua Qu, Wenjing Yu, Zhiqin Gao
{"title":"Improved efficacy of cisplatin delivery by peanut agglutinin‑modified liposomes in non‑small cell lung cancer.","authors":"Ben Yang, Rongguan Kou, Hui Wang, Anping Wang, Lili Wang, Sipeng Sun, Mengqi Shi, Shouzhen Zhao, Yubing Wang, Yi Wang, Jingliang Wu, Fei Wu, Fan Yang, Meihua Qu, Wenjing Yu, Zhiqin Gao","doi":"10.3892/ijmm.2024.5394","DOIUrl":"10.3892/ijmm.2024.5394","url":null,"abstract":"<p><p>Globally, non‑small cell lung cancer (NSCLC) is a significant threat to human health, and constitutes >80% of lung cancer cases. Cisplatin (CDDP), a commonly used drug in clinical treatment, has been the focus of research aiming to mitigate its potent toxicity through encapsulation within liposomes. However, challenges, such as a reduced drug loading efficiency and nonspecific release, have emerged as obstacles. The present study aimed to improve the encapsulation efficiency of CDDP within liposomes by pre‑preparation of CDDP and modifying the liposome surface through the incorporation of peanut agglutinin (PNA) as a ligand [CDDP‑loaded PNA‑modified liposomes (CDDP‑PNA‑Lip)]. This strategy was designed to enhance the delivery of CDDP to tumour tissues, thereby reducing associated side effects. The effect of CDDP‑PNA‑Lip on the proliferation and migration of NSCLC cell lines with high MUC1 expression was elucidated through <i>in vitro</i> studies. Additionally, the capacity of PNA modification to augment the targeted anti‑tumour efficacy of liposomes was assessed through xenograft tumour experiments. The results indicated that in an in vitro uptake assay Rhodamine B (RhB)‑loaded PNA‑modified liposomes were taken up by cells with ~50% higher efficiency compared with free RhB. In addition, CDDP‑PNA‑Lip resulted in a 2.65‑fold enhancement of tumour suppression <i>in vivo</i> compared with free CDDP. These findings suggested that the encapsulation of CDDP within ligand‑modified liposomes may significantly improve its tumour‑targeting capabilities, providing valuable insights for clinical drug development.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232663/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of long non‑coding RNAs in esophageal cell squamous carcinoma (Review). 长非编码 RNA 在食管鳞状细胞癌中的作用(综述)。
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-08-01 Epub Date: 2024-07-04 DOI: 10.3892/ijmm.2024.5396
Qihang Yan, Wingshing Wong, Li Gong, Jie Yang, Dachuan Liang, Kok-Yong Chin, Shuqin Dai, Junye Wang
{"title":"Roles of long non‑coding RNAs in esophageal cell squamous carcinoma (Review).","authors":"Qihang Yan, Wingshing Wong, Li Gong, Jie Yang, Dachuan Liang, Kok-Yong Chin, Shuqin Dai, Junye Wang","doi":"10.3892/ijmm.2024.5396","DOIUrl":"10.3892/ijmm.2024.5396","url":null,"abstract":"<p><p>Esophageal squamous cell carcinoma (ESCC) is a prevalent and deadly malignancy of the digestive tract. Recent research has identified long non‑coding RNAs (lncRNAs) as crucial regulators in the pathogenesis of ESCC. These lncRNAs, typically exceeding 200 nucleotides, modulate gene expression through various mechanisms, including the competing endogenous RNA (ceRNA) pathway and RNA‑protein interactions. The current study reviews the multifaceted roles of lncRNAs in ESCC, highlighting their involvement in processes such as proliferation, migration, invasion, epithelial‑mesenchymal transition, cell cycle progression, resistance to radiotherapy and chemotherapy, glycolysis, apoptosis, angiogenesis, autophagy, tumor growth, metastasis and the maintenance of cancer stem cells. Specific lncRNAs like HLA complex P5, LINC00963 and non‑coding repressor of NFAT have been shown to enhance resistance to radio‑ and chemotherapy by modulating pathways such as AKT signaling and microRNA interaction, which promote cell survival and proliferation under therapeutic stress. Furthermore, lncRNAs like family with sequence similarity 83, member A antisense RNA 1, zinc finger NFX1‑type containing 1 antisense RNA 1 and taurine upregulated gene 1 are implicated in enhancing invasive and proliferative capabilities of ESCC cells through the ceRNA mechanism, while interactions with RNA‑binding proteins further influence cancer cell behavior. The comprehensive analysis underscores the potential of lncRNAs as biomarkers for prognosis and therapeutic targets in ESCC, suggesting avenues for future research focused on elucidating the detailed molecular mechanisms and clinical applications of lncRNAs in ESCC management.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic impacts of GNE‑477‑loaded H2O2 stimulus‑responsive dodecanoic acid‑phenylborate ester‑dextran polymeric micelles on osteosarcoma. GNE-477负载的H2O2刺激响应十二烷酸-苯硼酸酯-葡聚糖聚合物胶束对骨肉瘤的治疗影响
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-08-01 Epub Date: 2024-06-28 DOI: 10.3892/ijmm.2024.5393
Songmu Pan, Zhuan Zou, Xiaofeng Zhou, Jiyong Wei, Huijiang Liu, Zhongyi Su, Gui Liao, Guangyu Huang, Zonggui Huang, Yi Xu, Minan Lu, Ronghe Gu
{"title":"Therapeutic impacts of GNE‑477‑loaded H<sub>2</sub>O<sub>2</sub> stimulus‑responsive dodecanoic acid‑phenylborate ester‑dextran polymeric micelles on osteosarcoma.","authors":"Songmu Pan, Zhuan Zou, Xiaofeng Zhou, Jiyong Wei, Huijiang Liu, Zhongyi Su, Gui Liao, Guangyu Huang, Zonggui Huang, Yi Xu, Minan Lu, Ronghe Gu","doi":"10.3892/ijmm.2024.5393","DOIUrl":"10.3892/ijmm.2024.5393","url":null,"abstract":"<p><p>Osteosarcoma (OS) is a highly malignant primary bone neoplasm that is the leading cause of cancer‑associated death in young people. GNE‑477 belongs to the second generation of mTOR inhibitors and possesses promising potential in the treatment of OS but dose tolerance and drug toxicity limit its development and utilization. The present study aimed to prepare a novel H<sub>2</sub>O<sub>2</sub> stimulus‑responsive dodecanoic acid (DA)‑phenylborate ester‑dextran (DA‑B‑DEX) polymeric micelle delivery system for GNE‑477 and evaluate its efficacy. The polymer micelles were characterized by morphology, size and critical micelle concentration. The GNE‑477 loaded DA‑B‑DEX (GNE‑477@DBD) tumor‑targeting drug delivery system was established and the release of GNE‑477 was measured. The cellular uptake of GNE‑477@DBD by three OS cell lines (MG‑63, U2OS and 143B cells) was analyzed utilizing a fluorescent tracer technique. The hydroxylated DA‑B was successfully grafted onto dextran at a grafting rate of 3%, suitable for forming amphiphilic micelles. Following exposure to H<sub>2</sub>O<sub>2</sub>, the DA‑B‑DEX micelles ruptured and released the drug rapidly, leading to increased uptake of GNE‑477@DBD by cells with sustained release of GNE‑477. The <i>in vitro</i> experiments, including MTT assay, flow cytometry, western blotting and RT‑qPCR, demonstrated that GNE‑477@DBD inhibited tumor cell viability, arrested cell cycle in G1 phase, induced apoptosis and blocked the PI3K/Akt/mTOR cascade response. <i>In vivo</i>, through the observation of mice tumor growth and the results of H&E staining, the GNE‑477@DBD group exhibited more positive therapeutic outcomes than the free drug group with almost no adverse effects on other organs. In conclusion, H<sub>2</sub>O<sub>2</sub>‑responsive DA‑B‑DEX presents a promising delivery system for hydrophobic anti‑tumor drugs for OS therapy.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232662/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Naringenin modulates the NO‑cGMP‑PKG signaling pathway by binding to AKT to enhance osteogenic differentiation in hPDLSCs. 柚皮素通过与 AKT 结合调节 NO-cGMP-PKG 信号通路,从而增强 hPDLSCs 的成骨分化。
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-08-01 Epub Date: 2024-06-28 DOI: 10.3892/ijmm.2024.5391
Shenghong Li, Zhenqiang Xiong, Yuxin Lan, Qian Zheng, Li Zhang, Xiaomei Xu
{"title":"Naringenin modulates the NO‑cGMP‑PKG signaling pathway by binding to AKT to enhance osteogenic differentiation in hPDLSCs.","authors":"Shenghong Li, Zhenqiang Xiong, Yuxin Lan, Qian Zheng, Li Zhang, Xiaomei Xu","doi":"10.3892/ijmm.2024.5391","DOIUrl":"10.3892/ijmm.2024.5391","url":null,"abstract":"<p><p>Naringenin (NAR) is a prominent flavanone that has been recognized for its capacity to promote the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). The present study aimed to explore how NAR promotes the osteogenic differentiation of hPDLSCs and to assess its efficacy in repairing alveolar bone defects. For this purpose, a protein‑protein interaction network of NAR action was established by mRNA sequencing and network pharmacological analysis. Gene and protein expression levels were evaluated by reverse transcription‑quantitative and western blotting. Alizarin red and alkaline phosphatase staining were also employed to observe the osteogenic capacity of hPDLSCs, and immunofluorescence was used to examine the co‑localization of NAR molecular probes and AKT in cells. The repair of mandibular defects was assessed by micro‑computed tomography (micro‑CT), Masson staining and immunofluorescence. Additionally, computer simulation docking software was utilized to determine the binding affinity of NAR to the target protein, AKT. The results demonstrated that activation of the nitric oxide (NO)‑cyclic guanosine monophosphate (cGMP)‑protein kinase G (PKG) signaling pathway could promote the osteogenic differentiation of hPDLSCs. Inhibition of AKT, endothelial nitric oxide synthase and soluble guanylate cyclase individually attenuated the ability of NAR to promote the osteogenic differentiation of hPDLSCs. Micro‑CT and Masson staining revealed that the NAR gavage group exhibited more new bone formation at the defect site. Immunofluorescence assays confirmed the upregulated expression of Runt‑related transcription factor 2 and osteopontin in the NAR gavage group. In conclusion, the results of the present study suggested that NAR promotes the osteogenic differentiation of hPDLSCs by activating the NO‑cGMP‑PKG signaling pathway through its binding to AKT.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Retracted] Sirt1 inhibits HG‑induced endothelial injury: Role of Mff‑based mitochondrial fission and F‑actin homeostasis‑mediated cellular migration. [撤稿】Sirt1 可抑制 HG 诱导的内皮损伤:基于 Mff 的线粒体裂变和 F-肌动蛋白平衡介导的细胞迁移的作用
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-08-01 Epub Date: 2024-06-28 DOI: 10.3892/ijmm.2024.5390
Ruijie Qin, Lina Zhang, Dong Lin, Fei Xiao, Lixin Guo
{"title":"[Retracted] Sirt1 inhibits HG‑induced endothelial injury: Role of Mff‑based mitochondrial fission and F‑actin homeostasis‑mediated cellular migration.","authors":"Ruijie Qin, Lina Zhang, Dong Lin, Fei Xiao, Lixin Guo","doi":"10.3892/ijmm.2024.5390","DOIUrl":"10.3892/ijmm.2024.5390","url":null,"abstract":"<p><p>Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the immunochemistry data shown in Figs. 4K and 7G were strikingly similar to data appearing in different form in other research articles written by different authors at different research institutes that had either already been published, or were submitted for publication at around the same time. Owing to the fact that contentious data in the above article had already been published elsewhere prior to its submission to <i>International Journal of Molecular Medicine</i>, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a satisfactory reply. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 44: 89‑102, 2019; DOI: 10.3892/ijmm.2019.4185].</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metformin prevents the onset and progression of intervertebral disc degeneration: New insights and potential mechanisms (Review). 二甲双胍可预防椎间盘退变的发生和发展:新见解和潜在机制(综述)。
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-08-01 Epub Date: 2024-07-04 DOI: 10.3892/ijmm.2024.5395
Wenzhi Yang, Yipin Yang, Yong Wang, Zongshi Gao, Jingtang Zhang, Weimin Gao, Yanjun Chen, You Lu, Haoyu Wang, Lingyan Zhou, Yifan Wang, Jie Li, Hui Tao
{"title":"Metformin prevents the onset and progression of intervertebral disc degeneration: New insights and potential mechanisms (Review).","authors":"Wenzhi Yang, Yipin Yang, Yong Wang, Zongshi Gao, Jingtang Zhang, Weimin Gao, Yanjun Chen, You Lu, Haoyu Wang, Lingyan Zhou, Yifan Wang, Jie Li, Hui Tao","doi":"10.3892/ijmm.2024.5395","DOIUrl":"10.3892/ijmm.2024.5395","url":null,"abstract":"<p><p>Metformin has been the go‑to medical treatment for addressing type 2 diabetes mellitus (T2DM) as a frontline oral antidiabetic. Obesity, cancer and bone deterioration are linked to T2DM, which is considered a metabolic illness. Numerous diseases associated with T2DM, such as tumours, cardiovascular disease and bone deterioration, may be treated with metformin. Intervertebral disc degeneration (IVDD) is distinguished by degeneration of the spinal disc, accompanied by the gradual depletion of proteoglycans and water in the nucleus pulposus (NP) of the IVD, resulting in lower back pain. The therapeutic effect of metformin on IVDD has also attracted much attention. By stimulating AMP‑activated kinase, metformin could enhance autophagy and suppress cell senescence, apoptosis and inflammation, thus effectively delaying IVDD. The present review aimed to systematically explain the development of IVDD and mechanism of metformin in the treatment and prevention of IVDD to provide a reference for the clinical application of metformin as adjuvant therapy in the treatment of IVDD.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232665/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of ubiquitination in the occurrence and development of osteoporosis (Review). 泛素化在骨质疏松症发生和发展中的作用(综述)。
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-08-01 Epub Date: 2024-06-28 DOI: 10.3892/ijmm.2024.5392
Xiaoxia Fan, Rong Zhang, Guocai Xu, Peiyun Fan, Wei Luo, Chunmei Cai, Ri-Li Ge
{"title":"Role of ubiquitination in the occurrence and development of osteoporosis (Review).","authors":"Xiaoxia Fan, Rong Zhang, Guocai Xu, Peiyun Fan, Wei Luo, Chunmei Cai, Ri-Li Ge","doi":"10.3892/ijmm.2024.5392","DOIUrl":"10.3892/ijmm.2024.5392","url":null,"abstract":"<p><p>The ubiquitin (Ub)‑proteasome system (UPS) plays a pivotal role in maintaining protein homeostasis and function to modulate various cellular processes including skeletal cell differentiation and bone homeostasis. The Ub ligase E3 promotes the transfer of Ub to the target protein, especially transcription factors, to regulate the proliferation, differentiation and survival of bone cells, as well as bone formation. In turn, the deubiquitinating enzyme removes Ub from modified substrate proteins to orchestrate bone remodeling. As a result of abnormal regulation of ubiquitination, bone cell differentiation exhibits disorder and then bone homeostasis is affected, consequently leading to osteoporosis. The present review discussed the role and mechanism of UPS in bone remodeling. However, the specific mechanism of UPS in the process of bone remodeling is still not fully understood and further research is required. The study of the mechanism of action of UPS can provide new ideas and methods for the prevention and treatment of osteoporosis. In addition, the most commonly used osteoporosis drugs that target ubiquitination processes in the clinic are discussed in the current review.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CD150‑dependent activation of EBV‑transformed B cells induces the differentiation of peripheral blood monocytes via the secretion of multiple cytokines CD150 依赖性激活 EBV 转化的 B 细胞,通过分泌多种细胞因子诱导外周血单核细胞分化
IF 5.7 3区 医学
International journal of molecular medicine Pub Date : 2024-07-16 DOI: 10.3892/ijmm.2024.5403
Hye Young Kim, Il Keung Seo, Dae Young Hur
{"title":"CD150‑dependent activation of EBV‑transformed B cells induces the differentiation of peripheral blood monocytes via the secretion of multiple cytokines","authors":"Hye Young Kim, Il Keung Seo, Dae Young Hur","doi":"10.3892/ijmm.2024.5403","DOIUrl":"https://doi.org/10.3892/ijmm.2024.5403","url":null,"abstract":"","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141642034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信