Stanislav Buklovskiy , Kateryna Miroshnichenko , Igor Tsukrov , Rebecca J. Thomson , Peder C. Solberg , Douglas W. Van Citters
{"title":"Mesoscale models for effective elastic properties of carbon-black/ultra-high-molecular-weight-polyethylene nanocomposites","authors":"Stanislav Buklovskiy , Kateryna Miroshnichenko , Igor Tsukrov , Rebecca J. Thomson , Peder C. Solberg , Douglas W. Van Citters","doi":"10.1016/j.ijengsci.2024.104159","DOIUrl":"10.1016/j.ijengsci.2024.104159","url":null,"abstract":"<div><div>In this paper, we apply mesoscale numerical modeling to predict the effective elastic properties of conductive carbon-black/ultra-high-molecular-weight-polyethylene nanocomposites. The models are based on X-ray microcomputed tomography images. The images show that for the considered range of carbon additive weight fractions, the conductive carbon black (CB) particles are distributed around the ultra-high-molecular-weight-polyethylene (UHMWPE) granules forming a carbon-containing layer of a thickness on the order of 1–2 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>.</div><div>Finite element models of representative volume elements (RVE), incorporating the CB-containing layer, are developed. The RVEs are generated based on the size and shape statistics extracted from processed microcomputed tomography images with further incorporation of the CB-containing layer by a custom image processing code. The layer is modeled analytically as a 2-phase composite consisting of spherical CB inclusions distributed in the UHMWPE matrix. Elastic moduli predicted in the models are compared to experimental data. Results show that the numerical simulations predict effective elastic moduli within the confidence intervals of the experimental measurements up to 7.5 wt % of CB inclusions.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"205 ","pages":"Article 104159"},"PeriodicalIF":5.7,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of interfacial sliding on anti-plane waves in an elastic plate imperfectly attached to an elastic half-space","authors":"Gennadi I. Mikhasev , Victor A. Eremeyev","doi":"10.1016/j.ijengsci.2024.104158","DOIUrl":"10.1016/j.ijengsci.2024.104158","url":null,"abstract":"<div><div>We study the anti-plane shear waves in a domain consisting of an elastic layer (plate) with a coating attached to an elastic half-space (substrate). We assume an imperfect contact between the layer and the half-space, allowing some sliding. We also assume some elastic bonds between the layer and the substrate. On the free top surface we apply the compatibility conditions within the Gurtin–Murdoch surface elasticity. We found two different solutions: (i) the transversely exponential–transversely exponential (TE–TE) regime with amplitudes decaying exponentially from the free top surface and the interface in both the plate and the half-space, and (ii) the transversely harmonic–transversely exponential (TH–TE) regime with harmonic wave behaviour in the transverse direction in the plate and exponential decay in the half-space. The TE regime of anti-plane waves in an elastic half-space with non-perfect contact is also considered as a special case. A detailed analysis of the derived dispersion relations reveals a crucial influence of the interface stiffness on the phase velocities of anti-plane waves. This effect consists in the decrease of the phase velocities when the interfacial bonds are weakened. The strongest effect of the interfacial sliding on the phase velocities was observed for the long-length waves belonging to the TE–TE regime. Based on the derived lower bounds for the wave numbers from which the TE–TE regime of anti-plane waves exists, we have developed the theoretical background and methodology for assessing the bond stiffness of thin plates imperfectly bonded to an elastic substrate.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"205 ","pages":"Article 104158"},"PeriodicalIF":5.7,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The energy balance of a hydraulic fracture at depth","authors":"Carlo Peruzzo, Andreas Möri, Brice Lecampion","doi":"10.1016/j.ijengsci.2024.104151","DOIUrl":"10.1016/j.ijengsci.2024.104151","url":null,"abstract":"<div><div>We detail the energy balance of a propagating hydraulic fracture. Using the linear hydraulic fracture model which combines lubrication flow and linear elastic fracture mechanics, we demonstrate how different propagation regimes are related to the dominance of a given term of the power balance of a growing hydraulic fracture. Taking an energy point of view allows us to offer a physical explanation of hydraulic fracture growth behaviours, such as, for example, the transition from viscosity to toughness dominated growth for a radial geometry, fracture propagation after the end of the injection or transition to self-buoyant elongated growth. We quantify the evolution of the different power terms for a series of numerical examples. We also discuss the order of magnitudes of the different terms for a industrial-like hydraulic fracturing treatment accounting for the additional dissipation in the injection line.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"205 ","pages":"Article 104151"},"PeriodicalIF":5.7,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S.Y. Liang , F. Zhu , Yun-Jiang Wang , E. Pineda , T. Wada , H. Kato , J.C. Qiao
{"title":"On the kinetics of structural evolution in metallic glasses","authors":"S.Y. Liang , F. Zhu , Yun-Jiang Wang , E. Pineda , T. Wada , H. Kato , J.C. Qiao","doi":"10.1016/j.ijengsci.2024.104146","DOIUrl":"10.1016/j.ijengsci.2024.104146","url":null,"abstract":"<div><div>The classic phenomenological models fail to describe the physical landscape of creep deformation for amorphous solids. In this paper, creep behavior of typical metallic glasses with chemical compositions La<sub>62</sub>Al<sub>14</sub>Ag<sub>2.34</sub>Ni<sub>10.83</sub>Co<sub>10.83</sub>, Pd<sub>20</sub>Pt<sub>20</sub>Cu<sub>20</sub>Ni<sub>20</sub>P<sub>20</sub> and Cu<sub>46</sub>Zr<sub>39</sub>Hf<sub>8</sub>Al<sub>7</sub> were studied. Instead, we attempt to use a modified hierarchically correlated model informed by physics to realize the creep behaviors of metallic glasses. The anelastic deformation of creep is categorized into two distinct components, i.e., the highly correlated deformation unit sensitive to annealing and the low correlated unit associated with diffusion relaxation. The correlated component diminishes with structural aging. The validity of the model is verified by these findings, and the derived parameters provide insights into the structural and kinetic characteristics of metallic glasses. Decreased characteristic times and contrasting correlation factors indicate homogeneous structure and lower energy states. Moreover, a qualitative evaluation of the relative strengths of the dual deformation mechanisms during creep enables the characterization of β relaxation forms, shedding light on the intrinsic attributes of different types of metallic glasses. This methodology additionally facilitates the detection of structural aging and rejuvenation phenomena.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"205 ","pages":"Article 104146"},"PeriodicalIF":5.7,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Buckling analysis of functionally graded nanobeams via surface stress-driven model","authors":"Rosa Penna, Giuseppe Lovisi, Luciano Feo","doi":"10.1016/j.ijengsci.2024.104148","DOIUrl":"10.1016/j.ijengsci.2024.104148","url":null,"abstract":"<div><div>The manuscript investigates the buckling behaviour of Bernoulli-Euler nanobeams composed of Functionally-Graded (FG) materials with different cross-sectional shapes. This analysis is conducted using the surface stress-driven model of elasticity. The nonlocal governing equations for the elastostatic buckling problem are derived employing the principle of virtual work. The study also includes a parametric investigation, presenting and discussing the main results while varying the nonlocal parameter, material gradient index, the cross-sectional shapes and the constraints at the ends of the FG nanobeams. Critical loads are numerically calculated and compared with those obtained by other authors using the classical stress-driven model elasticity.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"205 ","pages":"Article 104148"},"PeriodicalIF":5.7,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Surface treatment of metal by combined particle beam","authors":"Elena S. Parfenova, Anna G. Knyazeva","doi":"10.1016/j.ijengsci.2024.104150","DOIUrl":"10.1016/j.ijengsci.2024.104150","url":null,"abstract":"<div><div>This work is related to modeling of metal surface modification process by combined particles beam. On the basis of thermodynamics of irreversible processes, including equations of state in differential form, a nonlinear model is formulated. The model takes into account the interaction of thermal, diffusion and mechanical waves and finiteness of relaxation times of thermal and diffusion processes. For the combined particle flow such model is proposed for the first time. The numerical algorithm is based on implicit difference schemes. The study of the interaction of waves of different nature is carried out on the example of a copper target treated with nickel and gold particles. It is shown that deformations take the maximal value at the left boundary, which is directly related to the presence of impurity concentration gradients. Depending on the pulse duration, the difference between the extrema on the elastic wave becomes less significant. With increasing temperature, obviously, the diffusion process accelerates. The propagation velocities of the interacting waves are different. The character of distributions of concentrations of introduced particles directly depends on the value of parameters proportional to relaxation times.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"205 ","pages":"Article 104150"},"PeriodicalIF":5.7,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling shock attenuation in hydrogels via frequency-dependent acoustic drag","authors":"Orel Guetta , Daniel Rittel","doi":"10.1016/j.ijengsci.2024.104149","DOIUrl":"10.1016/j.ijengsci.2024.104149","url":null,"abstract":"<div><div>A new method for assimilating a frequency-dependent drag coefficient into time-domain acoustic simulations is presented. The method combines structural (wave propagation) simulations together with acoustic attenuation of the individual frequencies through a model for the frequency-dependent drag coefficient. An incident pressure pulse is obtained experimentally or from a preliminary finite element simulation. This pulse is then decomposed into its spectral components. The propagation of each frequency component is simulated separately with the appropriate drag coefficient. In the final stage, the nodal pressure for all single frequency simulations are summed to reconstruct the transmitted attenuated pressure pulse. This method is demonstrated using a previously calibrated spectral model of the attenuation of methyl cellulose hydrogel, but it can be used for any other damping material for which a frequency response function can be obtained.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"205 ","pages":"Article 104149"},"PeriodicalIF":5.7,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On effective surface elastic moduli for microstructured strongly anisotropic coatings","authors":"Victor A. Eremeyev , Giuseppe Rosi , Salah Naili","doi":"10.1016/j.ijengsci.2024.104135","DOIUrl":"10.1016/j.ijengsci.2024.104135","url":null,"abstract":"<div><p>The determination of surface elastic moduli is discussed in the context of a recently proposed strongly anisotropic surface elasticity model. The aim of the model was to describe deformations of solids with thin elastic coatings associated with so-called hyperbolic metasurfaces. These metasurfaces can exhibit a quite unusual behaviour and concurrently a very promising wave propagation behaviour. In the model of strongly anisotropic surface elasticity, strain energy as a function of the first and second deformation gradients has been introduced in addition to the constitutive relations in the bulk. In order to obtain values of surface elastic moduli, we compare dispersion relations for anti-plane surface waves obtained using the two-dimensional (2D) model and three-dimensional (3D) straightforward calculations for microstructured coatings of finite thickness. We show that with derived effective surface moduli, the 2D model can correctly describe the wave propagation.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"204 ","pages":"Article 104135"},"PeriodicalIF":5.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020722524001198/pdfft?md5=c2416474a1bd2e434072802677d6c807&pid=1-s2.0-S0020722524001198-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Razie Izadi , Raj Das , Nicholas Fantuzzi , Patrizia Trovalusci
{"title":"Fracture properties of green nano fibrous network with random and aligned fiber distribution: A hierarchical molecular dynamics and peridynamics approach","authors":"Razie Izadi , Raj Das , Nicholas Fantuzzi , Patrizia Trovalusci","doi":"10.1016/j.ijengsci.2024.104136","DOIUrl":"10.1016/j.ijengsci.2024.104136","url":null,"abstract":"<div><p>Polylactic acid (PLA) nanofibrous networks have gained substantial interest across various engineering and scientific disciplines, such as tissue engineering, drug delivery, and filtration, due to their unique and multifunctional attributes, including biodegradability, tuneable mechanical properties, and surface functionality. However, predicting their mechanical behaviour remains challenging due to their structural complexity, multiscale features, and variability in material properties.</p><p>This study presents a hierarchical approach to investigate the fracture phenomena in both aligned and randomly oriented nanofibrous networks by integrating atomistic modelling and non-local continuum mechanics, peridynamics. At the nanoscale, all-atom molecular dynamics simulations are employed to apply tensile loads to freestanding pristine and silver-doped PLA nanofibres, where key mechanical properties such as Young's modulus, Poisson's ratio, and critical energy release rate are determined using innovative approaches. A new method is introduced to seamlessly transfer data from molecular dynamics to peridynamics by ensuring the convergence of the tensile response of a single fiber in both frameworks. This nano to micro coupling technique is then utilised to examine the Young's modulus, fracture toughness of mode I and II, and crack propagation in PLA nanofibrous networks. The proposed framework can also incorporate the effects of surface coating and fiber arrangements on the measured properties. The current research paves the way for the development of stronger and more durable eco-friendly nanofibrous networks with optimised performance.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"204 ","pages":"Article 104136"},"PeriodicalIF":5.7,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020722524001204/pdfft?md5=5a2924a0737229ad53086f87723b9ce9&pid=1-s2.0-S0020722524001204-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142048518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhaoxiang Shen , Raúl I. Sosa , Stéphane P.A. Bordas , Alexandre Tkatchenko , Jakub Lengiewicz
{"title":"Quantum-informed simulations for mechanics of materials: DFTB+MBD framework","authors":"Zhaoxiang Shen , Raúl I. Sosa , Stéphane P.A. Bordas , Alexandre Tkatchenko , Jakub Lengiewicz","doi":"10.1016/j.ijengsci.2024.104126","DOIUrl":"10.1016/j.ijengsci.2024.104126","url":null,"abstract":"<div><p>The macroscopic behaviors of materials are determined by interactions that occur at multiple lengths and time scales. Depending on the application, describing, predicting, and understanding these behaviors may require models that rely on insights from atomic and electronic scales. In such cases, classical simplified approximations at those scales are insufficient, and quantum-based modeling is required. In this paper, we study how quantum effects can modify the mechanical properties of systems relevant to materials engineering. We base our study on a high-fidelity modeling framework that combines two computationally efficient models rooted in quantum first principles: Density Functional Tight Binding (DFTB) and many-body dispersion (MBD). The MBD model is applied to accurately describe non-covalent van der Waals interactions. Through various benchmark applications, we demonstrate the capabilities of this framework and the limitations of simplified modeling. We provide an open-source repository containing all codes, datasets, and examples presented in this work. This repository serves as a practical toolkit that we hope will support the development of future research in effective large-scale and multiscale modeling with quantum-mechanical fidelity.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"204 ","pages":"Article 104126"},"PeriodicalIF":5.7,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020722524001101/pdfft?md5=2101857dffb97909280e02ce601f2c8c&pid=1-s2.0-S0020722524001101-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}