Pascal Alexander Happ , Igor Tsukrov , Romana Piat
{"title":"On application of a surrogate model to numerical evaluation of effective elastic properties of composites with 3D rotationally symmetric particles","authors":"Pascal Alexander Happ , Igor Tsukrov , Romana Piat","doi":"10.1016/j.ijengsci.2024.104121","DOIUrl":"10.1016/j.ijengsci.2024.104121","url":null,"abstract":"<div><p>Micromechanical modelling of particulate composites with non-ellipsoidal particle shapes presents significant challenges because analytical approaches based on the fundamental results of Eshelby cannot be used. On the other side, direct numerical evaluations by finite element analysis can involve high computational cost in the case when particle features have small radius of curvature, sharp edges and require extremely fine meshes. This paper proposes substituting the exact particle shape with a surrogate model producing approximately the same contribution to the effective elastic moduli. We illustrate our approach by considering rotationally symmetric 3D particle shapes with the external surface defined by the Laplace's spherical harmonics. In this case, spherical layered surrogates offer good accuracy of approximation, especially when the material parameters of each layer are determined by the particle swarm optimization algorithm. The proposed approach is presented by considering several highly undulated particle shapes and comparing the surrogate model results with direct finite element simulations of the original microstructure.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"203 ","pages":"Article 104121"},"PeriodicalIF":5.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020722524001058/pdfft?md5=66023d48eab1ff6dff99af2d7772af92&pid=1-s2.0-S0020722524001058-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141836789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Keith Davey , Mohd Izzat Abd Malek , Zainab Ali , Hamed Sadeghi , Rooholamin Darvizeh
{"title":"The theory of scaled electromechanics","authors":"Keith Davey , Mohd Izzat Abd Malek , Zainab Ali , Hamed Sadeghi , Rooholamin Darvizeh","doi":"10.1016/j.ijengsci.2024.104122","DOIUrl":"10.1016/j.ijengsci.2024.104122","url":null,"abstract":"<div><p>A new scaling theory called finite similitude has appeared in the open literature for the scaling of physical systems. The theory is founded on the metaphysical concept of <em>space scaling</em> and consequently can in principle be applied to all physics. With regard to the application of the theory to multi-physics however, an obstacle is dissimilar mathematical formulations, that are preferred and applied in practice. This paper looks to combine electrical and mechanical physics under the rules of the scaling theory for the analysis of scaled electromechanical systems. To facilitate this the physics of electromechanics is described using transport equations on a projected space termed the scaling space. It is shown that this approach unifies the mechanical and electrical descriptions and allows the scaling theory to be applied and for scaling identities to be established. Additionally, on confirming that the scaling space possesses all the attributes of a real physical space (despite being a mere projection), mathematical modelling (to great advantage) is performed directly and integrated with the scaling theory. To showcase the concepts, mathematical models for previously researched electromechanical systems are directly analysed in the new scaling space. It is demonstrated how such models automatically account for scale dependencies in the electromechanical systems they represent. The huge potential of the new approach is revealed providing the means for formulating (for the first time) realistic representative scaled-mathematical models.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"203 ","pages":"Article 104122"},"PeriodicalIF":5.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamics of graphene origami-enabled auxetic metamaterial beams via various shear deformation theories","authors":"Behrouz Karami, Mergen H. Ghayesh","doi":"10.1016/j.ijengsci.2024.104123","DOIUrl":"10.1016/j.ijengsci.2024.104123","url":null,"abstract":"<div><p>Although auxetic metamaterials exhibit unique and unusual mechanical properties, such as a negative Poisson's ratio, their mechanics remains poorly understood. In this study, we model a graded beam fabricated from graphene origami-enabled auxetic metamaterials and investigate its dynamics from the perspective of different shear deformation theories. The auxetic metamaterial beam is composed of multiple layers of graphene origami-enabled auxetic metamaterials, where the content of graphene origami varies through the layered thickness; both the auxetic property and other properties are varied in a graded manner, which are effectively be approximated via micromechanical models. The Euler-Bernoulli, third-order, and higher-order shear deformable refined beam theories are adopted to model the auxetic metamaterial beam as a continuous system. Following this, the governing motion equations are derived using the Hamiltonian principle and then are numerically solved using a weighted residual method. The obtained results provide a comprehensive understanding of how graphene origami content and its distribution pattern, graphene folding degree, and the utilisation of different shear deformation theories influence the dynamic behaviour of the beam.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"203 ","pages":"Article 104123"},"PeriodicalIF":5.7,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020722524001071/pdfft?md5=958a71d96130175321189036b0346bd5&pid=1-s2.0-S0020722524001071-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141836829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ali Haydar , Laura Galuppi , Gianni Royer-Carfagni
{"title":"A neat flux-based weak formulation for thermal problems which develops Biot’s variational principle","authors":"Ali Haydar , Laura Galuppi , Gianni Royer-Carfagni","doi":"10.1016/j.ijengsci.2024.104103","DOIUrl":"https://doi.org/10.1016/j.ijengsci.2024.104103","url":null,"abstract":"<div><p>We propose a weak form of the transient heat equations for solid bodies, as a time-dependent spatial variation of the heat displacement vector field, whose time derivative is the heat flux. This develops the variational principle originally proposed by Biot, inasmuch Fourier’s law is embedded as a holonomic constraint, while energy conservation results from the variation (the vice-versa from Biot). This is a neat formulation because only the heat displacement appears in the variational equations, whereas Biot’s form also involved the unknown temperature field: Fourier’s law is used only <em>a posteriori</em> to recover the temperature. Since the heat displacement is generally more regular than the temperature field, it represents a natural variable in problems with material inhomogeneities, uneven radiation, thermal shocks. The three-dimensional analytical set-up is presented in comparison with Biot’s, for boundary conditions accounting for radiation and convection. A mechanical analogy with the equilibrium of an elastic bar with viscous constraints is suggested for the one-dimensional case. The variational equations are implemented in a finite element code. Numerical experiments on benchmark problems, involving high temperature gradients, confirm the efficiency of the proposed approach in many structural problems.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"202 ","pages":"Article 104103"},"PeriodicalIF":5.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020722524000879/pdfft?md5=c4dc5d4819ef2895d9de89f4739566bd&pid=1-s2.0-S0020722524000879-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yancong Wang, Yifan Qin, Kai Luo, Qiang Tian, Haiyan Hu
{"title":"Dynamic modeling and simulation of hard-magnetic soft beams interacting with environment via high-order finite elements of ANCF","authors":"Yancong Wang, Yifan Qin, Kai Luo, Qiang Tian, Haiyan Hu","doi":"10.1016/j.ijengsci.2024.104102","DOIUrl":"https://doi.org/10.1016/j.ijengsci.2024.104102","url":null,"abstract":"<div><p>Hard-magnetic soft (HMS) beams made of soft polymer matrix embedded with hard-magnetic particles can generate large and fast deformation under magnetic stimulation. Dynamic modeling and simulation of HMS beams interacting with complex environment are challenging in terms of computational accuracy and efficiency. This paper presents a method for high-order modeling and efficient computation of HMS beams. The major contribution of the method is a new three-node HMS beam element of absolute nodal coordinate formulation (ANCF), which applies to two material models of nonlinear and linear elasticities (i.e. neoHookean and St. Venant-Kirchhoff) coupled with magnetic energy. To improve the efficiency of the method, the paper presents how to derive the generalized internal forces and their Jacobians via invariant tensors, and how to determine the generalized external forces to model dynamic loads and interactions including gravity, hydrodynamics in fluids, and frictional contact in pipelines. Afterwards, the paper gives both static and dynamic equations with Rayleigh damping and discusses the numerical algorithms. Finally, the paper makes a comparison of static analysis and the experimental observation to validate the accuracy of the proposed modeling method. The paper also discusses the dynamic simulations, including forced vibration, swimming motion, crawling locomotion, and navigating motion to demonstrate the predictive capability and efficacy of the proposed method for dynamic problems.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"202 ","pages":"Article 104102"},"PeriodicalIF":5.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paola Nardinocchi , Siddhartha H. Ommi , Giulio Sciarra
{"title":"Swelling-driven mechanics of partially cross-linked polymer gels: Steady state solutions","authors":"Paola Nardinocchi , Siddhartha H. Ommi , Giulio Sciarra","doi":"10.1016/j.ijengsci.2024.104101","DOIUrl":"https://doi.org/10.1016/j.ijengsci.2024.104101","url":null,"abstract":"<div><p>The study aims to investigate how the mechanics of swelling of a polymer gel is affected by the presence of free-chains due to a partial cross-linking process. The analysis is focused on the equilibrium solution of the mechano-diffusion problem under different <em>as-prepared</em> states, corresponding to different polymer network fractions before diffusion starts. The limit situations of perfectly cross-linked polymer gel and solution of polymeric chains are recovered by the model.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"202 ","pages":"Article 104101"},"PeriodicalIF":5.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020722524000855/pdfft?md5=2037b96ec0f572646bee2bf8ead2feee&pid=1-s2.0-S0020722524000855-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three-dimensional model for cyclic, rate-independent and compressible response of aluminium","authors":"Lakshmanan Manimaran, U. Saravanan","doi":"10.1016/j.ijengsci.2024.104110","DOIUrl":"https://doi.org/10.1016/j.ijengsci.2024.104110","url":null,"abstract":"<div><p>A three-dimensional rate-independent framework consistent with thermodynamics is presented to study the dissipative response of metals. The entropy inequality is transformed into equality by introducing a non-negative, continuous rate of dissipation function. The constitutive relation that relates the Hencky strain and Cauchy stress is parametrized by replacement stress, instead of the plastic strain, for reasons discussed. The evolution equation for the replacement stress is obtained such that among the possible processes, the one that maximizes the rate of dissipation is realized so that thermodynamic equilibrium is achieved in the shortest possible time. Appropriate 3D constitutive functions to model aluminium are prescribed for the dissipation function and a Gibbs-like potential. The variation of the transverse strain as a function of the uniaxial strain differs between the present formulation and classical plasticity. Consistent with some of the experimental observations, the material tends to be compressible in the present formulation during plastic deformations. Thus, further experimental investigations are required to choose the appropriate constitutive relation.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"202 ","pages":"Article 104110"},"PeriodicalIF":5.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Fara , J. Hron , J. Málek , K.R. Rajagopal , K. Tůma
{"title":"Fluid–structure numerical solver for axi-symmetric flows with Navier’s slip interface condition between the viscoelastic solid and the Navier–Stokes fluid: Effects of deformable solids on the flow characteristics","authors":"J. Fara , J. Hron , J. Málek , K.R. Rajagopal , K. Tůma","doi":"10.1016/j.ijengsci.2024.104088","DOIUrl":"10.1016/j.ijengsci.2024.104088","url":null,"abstract":"<div><p>Flows of an incompressible Navier–Stokes fluid are frequently assumed to take place in domains whose boundaries are rigid and that the fluid adheres to them, i.e. there is the “no-slip” on the interface between the rigid solid and the flowing fluid. However, in many interesting problems the walls respond as (visco)-elastic structures and different slipping conditions on the fluid–structure interface seem to be more appropriate. Our main objective is to develop a reliable numerical approach capable of efficiently solving such fluid–structure interaction problems with Navier’s slip interface conditions in three dimensions. We focus on axi-symmetric flow problems; their two-dimensional character allows us to perform systematic testing of the performance of the solver and to study the effects of the (visco)-elasticity of the wall and the value of Navier’s slip-parameter on the properties of the flow including the vorticity, dissipation, pressure drop and wall shear stress. All tests concern steady and time-periodic flows in pipe-like domains with sinuses. It is startling that, in this geometric setting, the effects of (visco)-elasticity of the structure on the flow are minor in comparison to the setting when the walls are rigid.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"201 ","pages":"Article 104088"},"PeriodicalIF":6.6,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141187715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microbuckling prediction of soft viscoelastic composites by the finite strain HFGMC micromechanics","authors":"Jacob Aboudi , Rivka Gilat","doi":"10.1016/j.ijengsci.2024.104100","DOIUrl":"10.1016/j.ijengsci.2024.104100","url":null,"abstract":"<div><p>A perturbation expansion is offered for the micromechanical prediction of the bifurcation buckling of soft viscoelastic composites with imperfections (e.g. wavy fibers). The composites of periodic microstructure are subjected to compressive loading and are undergoing large deformations. The perturbation expansion applied on the imperfect composites results in a zero and first order problems of perfect composites. In the former problem, loading exists and interfacial and periodicity conditions are imposed. In the latter one, however, loading is absent, the interfacial conditions possess complicated terms that have been already established by the zero order problem, and Bloch-Floquet boundary conditions are imposed. Both problems are solved by the high-fidelity generalized method of cells (HFGMC) micromechanical analysis. The ideal critical bifurcation stress can be readily predicted from the asymptotic values of the form of waviness growth with applied loading. This form enables also the estimation of the actual critical stress. The occurrence of the corresponding critical deformation and time is obtained by generating the stress-deformation response of the composite. The offered approach is illustrated for the prediction of bifurcation buckling of viscoelastic bi-layered and polymer matrix composites as well as porous materials. Finally, bifurcation buckling stresses of unidirectional composites in which the matrix is represented by the quasi-linear viscoelasticity theory are predicted. This quasi-linear viscoelasticity model exhibits constant damping which is observed by the actual viscoelastic behavior of biological materials.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"201 ","pages":"Article 104100"},"PeriodicalIF":6.6,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141189014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianpeng Zhang , Song Wei , Chao Shang , Yu Duan , Zhaoqiang He , Hua An , Xinge Yu , Zhengchun Peng
{"title":"Modeling and experimental analysis of piezoresistive behavior in conductive porous elastomer under significantly large deformation","authors":"Jianpeng Zhang , Song Wei , Chao Shang , Yu Duan , Zhaoqiang He , Hua An , Xinge Yu , Zhengchun Peng","doi":"10.1016/j.ijengsci.2024.104091","DOIUrl":"https://doi.org/10.1016/j.ijengsci.2024.104091","url":null,"abstract":"<div><p>Piezoresistive porous elastomers (<strong>PPEs</strong>) are gaining attention in the field of flexible electronics due to their unique properties including ultra softness, ultra lightness, and high sensitivity. These properties can be precisely adjusted through advanced material synthesis and micro/nanofabrication technologies that control the size, shape, and composition of the functional nanoparticles. Despite various theoretical models of porous materials developed to advance the design of these materials, issues such as reverse piezoresistive response and resistance overshooting remains to be unsolved. Using principles of elastic mechanics and electrical tunnel effects, the present study introduces an analytical model that considers the effects of multimodal buckling of the pore wall, pore closure, microcracks, and mismatch within the pore wall under large deformation. The proposed model achieves a 99.5 % accuracy rate in describing the piezoresistive response (stress and resistance) under 75 % compression deformation by incorporating electrical tunnel theory into the mechanical model. The study also uncovers the mechanism behind high resistance overshooting and its relevant influences, including factors such as loading speed and application temperature. These findings are expected to drive the development of better porous composites and pave the way for practical applications of PPEs in various fields of smart sensors.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"201 ","pages":"Article 104091"},"PeriodicalIF":6.6,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}