Koami P. DADABO, Napo BONFOH, Hafid SABAR, Rodrigue MATADI-BOUMBIMBA
{"title":"Eshelby's inhomogeneity model within Mindlin's first strain gradient elasticity theory and its applications in composite materials","authors":"Koami P. DADABO, Napo BONFOH, Hafid SABAR, Rodrigue MATADI-BOUMBIMBA","doi":"10.1016/j.ijengsci.2024.104167","DOIUrl":null,"url":null,"abstract":"<div><div>Eshelby's inhomogeneity problem is solved within the second form of Mindlin's first strain gradient elasticity theory for the prediction of the effective elastic properties of composites. Considering Green's function technique, an integral equation is established for an ellipsoidal inhomogeneity embedded in a homogeneous elastic medium and subjected to non-uniform boundary conditions. Within isotropic elasticity, the mean strain inside a spherical inhomogeneity is detailed to provide analytical results. In addition to the elastic properties of the inhomogeneity and the matrix, the strain localization depends on five gradient elastic constants, introduced by the first strain gradient elasticity theory. The effective bulk and shear moduli of a two-phase composite are predicted through Mori-Tanaka's scheme. The strain localization and the effective elastic moduli are then expressed within some simplified gradient elasticity theories. To test the relevance of the developed model, its predictions are compared with those of some investigations and the effective elastic properties are analyzed for a metal matrix composite. Finally, some comparisons with experimental data are performed to estimate the characteristic length scale parameters and gradient elastic constants of local phases.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"206 ","pages":"Article 104167"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524001514","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Eshelby's inhomogeneity problem is solved within the second form of Mindlin's first strain gradient elasticity theory for the prediction of the effective elastic properties of composites. Considering Green's function technique, an integral equation is established for an ellipsoidal inhomogeneity embedded in a homogeneous elastic medium and subjected to non-uniform boundary conditions. Within isotropic elasticity, the mean strain inside a spherical inhomogeneity is detailed to provide analytical results. In addition to the elastic properties of the inhomogeneity and the matrix, the strain localization depends on five gradient elastic constants, introduced by the first strain gradient elasticity theory. The effective bulk and shear moduli of a two-phase composite are predicted through Mori-Tanaka's scheme. The strain localization and the effective elastic moduli are then expressed within some simplified gradient elasticity theories. To test the relevance of the developed model, its predictions are compared with those of some investigations and the effective elastic properties are analyzed for a metal matrix composite. Finally, some comparisons with experimental data are performed to estimate the characteristic length scale parameters and gradient elastic constants of local phases.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.