Machine learning for crack detection in an anisotropic electrically conductive nano-engineered composite interleave with realistic geometry

IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Iskander S. Akmanov, Stepan V. Lomov, Mikhail Y. Spasennykh, Sergey G. Abaimov
{"title":"Machine learning for crack detection in an anisotropic electrically conductive nano-engineered composite interleave with realistic geometry","authors":"Iskander S. Akmanov,&nbsp;Stepan V. Lomov,&nbsp;Mikhail Y. Spasennykh,&nbsp;Sergey G. Abaimov","doi":"10.1016/j.ijengsci.2024.104171","DOIUrl":null,"url":null,"abstract":"<div><div>Engineering interleaves of composite laminates with carbon nanotubes (CNTs) improves interlaminar fracture toughness, creating also conductivity, which can be employed for damage identification. The paper explores machine learning (ML) solution of the inverse problem of the defect identification for interleaves with anisotropic conductivity (aligned CNTs). The electrical and geometrical properties of the interleave are assigned based on the synchrotron X-ray computer tomography of glass fibre / epoxy laminates with nanostitch. Several machine learning (ML) models are applied (XGBoost, fully connected (FCNN) and convolution neural (CNN) networks). XGBoost and FCNN algorithms performed poorly, failing to detect smaller defects and giving significant errors for larger ones. CNN algorithm detects defects well: It predicts the geometric characteristics of the defect with error below 16 %.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"205 ","pages":"Article 104171"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524001551","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Engineering interleaves of composite laminates with carbon nanotubes (CNTs) improves interlaminar fracture toughness, creating also conductivity, which can be employed for damage identification. The paper explores machine learning (ML) solution of the inverse problem of the defect identification for interleaves with anisotropic conductivity (aligned CNTs). The electrical and geometrical properties of the interleave are assigned based on the synchrotron X-ray computer tomography of glass fibre / epoxy laminates with nanostitch. Several machine learning (ML) models are applied (XGBoost, fully connected (FCNN) and convolution neural (CNN) networks). XGBoost and FCNN algorithms performed poorly, failing to detect smaller defects and giving significant errors for larger ones. CNN algorithm detects defects well: It predicts the geometric characteristics of the defect with error below 16 %.
各向异性导电纳米工程复合材料交错层中裂纹检测的机器学习,具有逼真的几何形状
使用碳纳米管(CNTs)对复合材料层压板的交错层进行工程设计,不仅能提高层间断裂韧性,还能提高导电性,可用于损伤识别。本文探讨了各向异性导电性(排列的碳纳米管)交错层缺陷识别逆问题的机器学习(ML)解决方案。交错层的电气和几何特性是根据具有纳米缝隙的玻璃纤维/环氧树脂层压板的同步辐射 X 射线计算机断层扫描来确定的。应用了多种机器学习(ML)模型(XGBoost、全连接(FCNN)和卷积神经(CNN)网络)。XGBoost 和 FCNN 算法表现不佳,无法检测到较小的缺陷,而对较大的缺陷则误差很大。CNN 算法能很好地检测出缺陷:它能预测缺陷的几何特征,误差低于 16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Engineering Science
International Journal of Engineering Science 工程技术-工程:综合
CiteScore
11.80
自引率
16.70%
发文量
86
审稿时长
45 days
期刊介绍: The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome. The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process. Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信