César Omar Ramírez Quiroz, Carina Bronnbauer, Ievgen Levchuk, M. Salvador, Yi Hou, K. Forberich, C. Brabec
{"title":"Coloring semitransparent room-temperature fabricated perovskite solar cells via dielectric mirrors (Conference Presentation)","authors":"César Omar Ramírez Quiroz, Carina Bronnbauer, Ievgen Levchuk, M. Salvador, Yi Hou, K. Forberich, C. Brabec","doi":"10.1117/12.2238626","DOIUrl":"https://doi.org/10.1117/12.2238626","url":null,"abstract":"While the development of perovskite-based semitransparent solar cells with competitive levels of transparency and efficiency offer a promising perspective towards building integrated photovoltaics, the color perception of perovskite films is of limited visual aesthetics, compromising their applicability to facades and windows. In the present work, we develop a technique to grow crystalline, ultrathin perovskite films through a solvent-solvent extraction process featuring full crystallization within few seconds at RT and under 45%RH environmental conditions. As a result we obtained the highest combination of efficiency and transparency to date for perovskite solar cells. We further improved the visual aesthetics of our devices by implementing dielectric mirrors. EQE and UV-Vis spectroscopic measurements are performed to fully characterize the device stacks featuring four different dielectric mirror configurations. By customizing the mirror to the near-IR absorption region of the perovskite, we could increase the Jsc by 18.7%, yielding a light blue appearance and showing 31.4% transparency at 3.5% electrical power efficiency. Both, the solar cells and the dielectric mirrors are fully-solution processed under ambient conditions and are easily transferable to roll-to-roll upscaling. Optical simulations support our experimental findings and provide a global perspective emulating full device stack appearance covering all the colors in the visible spectra. Transparency, photocurrent density contribution and chromaticity are finally simulated and analyzed. Based on the detailed analysis, we give an outlook on the performance – color – transparency roadmap for perovskite solar cells.","PeriodicalId":140444,"journal":{"name":"Optics + Photonics for Sustainable Energy","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125057949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Yellowhair, H. Kwon, A. Alú, R. Jarecki, S. Shinde
{"title":"Metamaterial-based high efficiency absorbers for high temperature solar applications (Conference Presentation)","authors":"J. Yellowhair, H. Kwon, A. Alú, R. Jarecki, S. Shinde","doi":"10.1117/12.2249813","DOIUrl":"https://doi.org/10.1117/12.2249813","url":null,"abstract":"Operation of concentrated solar power receivers at higher temperatures (<700°C) would enable supercritical carbon dioxide (sCO2) power cycles for improved power cycle efficiencies (<50%) and cost-effective solar thermal power. Unfortunately, radiative losses at higher temperatures in conventional receivers can negatively impact the system efficiency gains. One approach to improve receiver thermal efficiency is to utilize selective coatings that enhance absorption across the visible solar spectrum while minimizing emission in the infrared to reduce radiative losses. Existing coatings, however, tend to degrade rapidly at elevated temperatures. In this paper, we report on the initial designs, fabrication, and characterization of spectrally selective metamaterial-based absorbers for high-temperature, high-thermal flux environments important for solarized sCO2 power cycles. Metamaterials are structured media whose optical properties are determined by sub-wavelength structural features instead of bulk material properties, providing unique solutions by decoupling the optical absorption spectrum from thermal stability requirements. The key enabling innovative concept proposed is the use of structured surfaces with spectral responses that can be tailored to optimize the absorption and retention of solar energy for a given temperature range. In this initial study we use Tungsten for its stability in expected harsh environments, compatibility with microfabrication techniques, and required optical performance. Our goal is to tailor the optical properties for high (near unity) absorptivity across the majority of the solar spectrum and over a broad range of incidence angles, and at the same time achieve negligible absorptivity in the near infrared to optimize the energy absorbed and retained. To this goal, we apply the recently developed concept of plasmonic Brewster angle to suitably designed nanostructured Tungsten surfaces. We predict that this will improve the receiver thermal efficiencies by at least 10% over current solar receivers.","PeriodicalId":140444,"journal":{"name":"Optics + Photonics for Sustainable Energy","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125414995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Lordi, J. Varley, Xiaoqing He, A. Rockett, J. Bailey, G. Zapalac, N. Mackie, D. Poplavskyy, A. Bayman
{"title":"Design of optimal buffer layers for CuInGaSe2 thin-film solar cells(Conference Presentation)","authors":"V. Lordi, J. Varley, Xiaoqing He, A. Rockett, J. Bailey, G. Zapalac, N. Mackie, D. Poplavskyy, A. Bayman","doi":"10.1117/12.2237243","DOIUrl":"https://doi.org/10.1117/12.2237243","url":null,"abstract":"Optimizing the buffer layer in manufactured thin-film PV is essential to maximize device efficiency. Here, we describe a combined synthesis, characterization, and theory effort to design optimal buffers based on the (Cd,Zn)(O,S) alloy system for CIGS devices. Optimization of buffer composition and absorber/buffer interface properties in light of several competing requirements for maximum device efficiency were performed, along with process variations to control the film and interface quality. The most relevant buffer properties controlling performance include band gap, conduction band offset with absorber, dopability, interface quality, and film crystallinity. Control of an all-PVD deposition process enabled variation of buffer composition, crystallinity, doping, and quality of the absorber/buffer interface. Analytical electron microscopy was used to characterize the film composition and morphology, while hybrid density functional theory was used to predict optimal compositions and growth parameters based on computed material properties. Process variations were developed to produce layers with controlled crystallinity, varying from amorphous to fully epitaxial, depending primarily on oxygen content. Elemental intermixing between buffer and absorber, particularly involving Cd and Cu, also is controlled and significantly affects device performance. Secondary phase formation at the interface is observed for some conditions and may be detrimental depending on the morphology. Theoretical calculations suggest optimal composition ranges for the buffer based on a suite of computed properties and drive process optimizations connected with observed film properties. Prepared by LLNL under Contract DE-AC52-07NA27344.","PeriodicalId":140444,"journal":{"name":"Optics + Photonics for Sustainable Energy","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124547865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen‐Hui Cheng, Katherine T Fountaine, Colton R. Bukowsky, H. Atwater
{"title":"Scalable, epitaxy-free fabrication of super-absorbing sparse III-V nanowire arrays for photovoltaic applications (Conference Presentation)","authors":"Wen‐Hui Cheng, Katherine T Fountaine, Colton R. Bukowsky, H. Atwater","doi":"10.1117/12.2238450","DOIUrl":"https://doi.org/10.1117/12.2238450","url":null,"abstract":"III-V compound semiconductor nanowire arrays are promising candidates for photovoltaics applications due to their high volumetric absorption. Uniform nanowire arrays exhibit high absorption at certain wavelengths due to strong coupling into lossy waveguide modes. Previously, simulations predicted near-unity, broadband absorption in sparse semiconductor nanowire arrays (<5% fill fraction) with multi-radii and tapered nanowire array designs [1]. Herein, we experimentally demonstrate near-unity broadband absorption in InP nanowire arrays via a scalable, epitaxy-free fabrication method, using nanoimprint lithography and ICP-RIE to define nanowire arrays in bulk InP wafers. In addition to mask pattern design (wire radius and spacing) and etch chemistry (wire taper), appropriate selection of a hard mask for the InP etch is critical to precise dimension control and reproducibility. Polymer-embedded wires are removed from the bulk InP substrate by a mechanical method that facilitates extensive reuse of a single bulk InP wafer to synthesize many polymer-embedded nanowire array thin films. Arrays containing multiple nanowire radii and tapered nanowires were successfully fabricated. For both designs, the polymer-embedded arrays achieved ~90% broadband absorption (λ=400-900 nm) in less than 100 nm planar equivalence of InP. The addition of a silver back reflector increased this broadband absorption to ~95%. The repeatable process of imprinting, etching and peeling to obtain many nanowire arrays from one single wafer represents an economical manufacturing route for high efficiency III-V photovoltaics. [1] K.T. Fountaine, C.G. Kendall, Harry A. Atwater, “Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation,” Opt. Exp. (2014).","PeriodicalId":140444,"journal":{"name":"Optics + Photonics for Sustainable Energy","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126247386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Kazmerski, Suellen C. S. Costa, Marcelo Machado, A. Diniz
{"title":"Dust in the wind: Soiling of solar devices : Is there a Holy Grail solution? (Conference Presentation)","authors":"L. Kazmerski, Suellen C. S. Costa, Marcelo Machado, A. Diniz","doi":"10.1117/12.2239534","DOIUrl":"https://doi.org/10.1117/12.2239534","url":null,"abstract":"Soiling, the sedimentation of particulate matter (on the size scale of 1/10 the diameter of a human hair) on the exposed surfaces of solar collectors, is a growing area of concern for solar-system performance, reliability, maintenance, and cost. In the case of photovoltaics (PV), the condition of this first-surface of interaction of the incident photons is critical for ensuring that the maximum-possible light reaches the conversion devices. This paper begins with a more than seven-decade historical look at the research invested into this problem, highlighting the motivation and milestones; the researchers and the progress. The current growing terrestrial markets for solar have brought a new focus on soiling and dust issues. That is because many of these new markets in the solar-rich geographic regions of our world are ironically also in the most dust-rich and soiling-prone ones as well. This paper continues to provide an overview of the status of current research efforts toward understanding the basic soiling mechanisms, the relationships to the PV technology approaches, the geographical differences (highlighting Brasil, India, and the MENA region) in the severity of the problem, the dust physics and chemistry—all relating to the current and future mitigation approaches. Included are some fundamental microscale through nanoscale examinations at how individual dust particles adhere to module glass surfaces—as well as how the particles might stick to each other under certain environmental conditions. These observations are used to show how fundamental science may lead to the macroscale engineering solutions of these soiling problems. This presentation is designed to both overview the soiling area and highlight some of the current and future research directions, speculate on short-term approaches preventing solar showstoppers, and speculate on some “holy-grail” schemes that might lead to the final solutions.","PeriodicalId":140444,"journal":{"name":"Optics + Photonics for Sustainable Energy","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129192735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Bruckman, R. French, Yu Wang, M. Kempe, A. A. Lefebvre, X. Gu, Liang Ji, K. Wan, C. Flueckiger
{"title":"Cross-correlation of backsheet degradation between real-world exposed modules and accelerated exposures of backsheet materials (Conference Presentation)","authors":"L. Bruckman, R. French, Yu Wang, M. Kempe, A. A. Lefebvre, X. Gu, Liang Ji, K. Wan, C. Flueckiger","doi":"10.1117/12.2238162","DOIUrl":"https://doi.org/10.1117/12.2238162","url":null,"abstract":"heets are a key polymeric component of a PV module and understanding its degradation is necessary to be able to predict the lifetime of PV modules. We are developing a backsheet predictive tests and a model based on point- in-time data from analytical techniques and datastreams that are applicable to both outdoor and indoor PV module backsheet studies and are supplemented with meteorology data, climatic and brand/model, and other accessible information. The predictive tests and models will specify indoor and outdoor exposure and evaluation data acquisition criteria, variable selection, and temporal duration and variation so as to be able to predict backsheet performance in various climatic zones. This backsheet performance prediction is based on defined backsheet failures in the field, and is quantified by tracking backsheet degradation in the field so as to determine degradation rates. The backsheet lifetime performance predictive tests and models, will be developed using a Stressor / Mechanism / Response framework in which all data are categorized as stressor, mechanism and performance (response) variables and are represented as discrete points-in-time datasets. We will develop and validate these accelerated indoor exposures and evaluations and models and cross-correlate the outdoor and accelerated indoor exposures and evaluations. The evaluation techniques include nondestructive spectroscopy and microscopy techniques and destructive techniques and will provide data in predefined variables, which are used in the predictive modeling.","PeriodicalId":140444,"journal":{"name":"Optics + Photonics for Sustainable Energy","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128600491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Mansoori, S. Addamane, E. Renteria, D. Shima, C. Hains, G. Balakrishnan
{"title":"Effect of AlSb quantum dots on efficiency of GaAs solar cell (Conference Presentation)","authors":"A. Mansoori, S. Addamane, E. Renteria, D. Shima, C. Hains, G. Balakrishnan","doi":"10.1117/12.2238291","DOIUrl":"https://doi.org/10.1117/12.2238291","url":null,"abstract":"Quantum Dots (QDs) have a broad applications in science and specifically in solar cell. Many research groups show that by adding QDs with lower bandgap respect to host material, the overall absorption of sun spectrum coverage will increase. Here, we propose using QDs with higher band gap respect to host material to improve efficiency of solar cell by improving quantum efficiency. GaAs solar cells have the highest efficiency in single junction solar cells. However, the absorption of GaAs is not good enough in wavelength lower than 550nm. AlSb can absorb shorter wavelength with higher absorption coefficient and also recombination rate should be lower because of higher bandgap of AlSb respect to GaAs. We embed AlSb QDs in GaAs solar cells and results show slight improvement in quantum efficiency and also in overall efficiency. Coverage of AlSb QDs has a direct impact on quality of AlSb QDs and efficiency of cell. In the higher coverage, intermixing between GaAs and AlSb causes to shift bandgap to lower value (having AlGaSb QDs instead of pure AlSb QDs). This intermixing decrease the Voc and overall efficiency of cell. In lower coverage, AlSb can survive from intermixing and overall performance of cell improves. Optimizing growth condition of AlSb QDs is a key point for this work. By using AlSb QDs, we can decrease the thickness of active layer of GaAs solar cells and have a thinner solar cell.","PeriodicalId":140444,"journal":{"name":"Optics + Photonics for Sustainable Energy","volume":"31 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133043387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. P. Guerrero, A. Cerdán Pasarán, T. López-Luke, D. Ramachari, Diego Esparza, E. De la Rosa Cruz, Víctor Hugo Romero Arellano
{"title":"Bifunctional NaYF4:Er3+/Yb3+ submicron rods, implemented in quantum dot sensitized solar cell(Conference Presentation)","authors":"J. P. Guerrero, A. Cerdán Pasarán, T. López-Luke, D. Ramachari, Diego Esparza, E. De la Rosa Cruz, Víctor Hugo Romero Arellano","doi":"10.1117/12.2237073","DOIUrl":"https://doi.org/10.1117/12.2237073","url":null,"abstract":"In this work are presented the results obtained with solar cells sensitized with quantum dots of cadmium sulphide (CdS) incorporating luminescent materials (NaYF4:Yb/Er). The study revealed that through using a bifunctional layer of NaYF4:Yb/Er submicron rods, the infrared radiation is absorbed in 980nm to generate luminescence in the visible region to 530nm, under the UP-conversion process, in the same way simultaneously, NaYF4:Yb/Er layer causes scattering toward the quantum dots, the emission and scattering generated by this material is reabsorbed by the QD-CdS, and these in turn are absorbing in its range of solar radiation absorption, Thus generates an increase in the electron injection into the semiconductor of TiO2. The results of a cell incorporating NaYF4: Yb/Er at 0.07M shown photoconversion efficiencies of 3.39% improving efficiency with respect to the reference solar cell without using NaYF4: Yb/Er of 1.99%. The obtained values of current and voltage showed a strong dependence of the percentage of NaYF4 Yb/Er, and the mechanism of incorporation of this material.","PeriodicalId":140444,"journal":{"name":"Optics + Photonics for Sustainable Energy","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132047265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Activities of the task group 8 on thin film PV module reliability (Conference Presentation)","authors":"N. Dhere","doi":"10.1117/12.2237449","DOIUrl":"https://doi.org/10.1117/12.2237449","url":null,"abstract":"Photovoltaic (PV) modules and systems are being used increasingly to provide renewable energy to schools, residences, small businesses and utilities. At this time, the home owners and small businesses have considerable difficulty in detecting module and/or system degradation and especially enforcing warranty. It needs to be noted that IEC 61215-1 (test req.), -2 (test proc.) and -1-1 (c-Si) are forecasted to be circulated end of Feb 2016 and only editorial changes would be possible. 61215 series does include thin film technologies and would be replacing 61646. Moreover, IEC 61215-1, section 7.2 power output and electric circuitry does contain significant changes to acceptance criteria regarding rated label values, particularly rated power. Even though it is believed that consensus could be achieved within IEC TC82 WG2, some of the smaller players that do not participate actively in IEC TC82 – may not be surprised and must be informed. The other tech specific parts 61215-1-2 (CdTe), -1-3 (a-Si, µc-Si) and -1-4 (CIS, CIGS) are out for comments. The IEC closing date was January 29, 2016. The additions alternative damp heat (DH) test proposed Solar Frontier is being reviewed. In the past, only 600 V systems were permitted in the grid-connected residential and commercial systems in the US. The US commercial systems can now use higher voltage (1,000-1500V) in order to reduce BOS component costs. It is believed that there would not be any problems. The Task Group 8 is collecting data on higher voltage systems.","PeriodicalId":140444,"journal":{"name":"Optics + Photonics for Sustainable Energy","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134338005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Predicting the potential moisture ingress characteristics of polyisobutylene based edge seals (Conference Presentation)","authors":"M. Kempe","doi":"10.1117/12.2239915","DOIUrl":"https://doi.org/10.1117/12.2239915","url":null,"abstract":"Photovoltaic devices are often sensitive to moisture and must be packaged in such a way as to limit moisture ingress for 25 years or more. Typically, this is accomplished through the use of impermeable front and backsheets (e.g., glass sheets or metal foils). However, this will still allow moisture ingress between the sheets from the edges. Attempts to hermetically seal with a glass frit or similarly welded bonds at the edge have had problems with costs and mechanical strength. Because of this, low diffusivity polyisobutylene materials filled with desiccant are typically used. Although it is well known that these materials will substantially delay moisture ingress, correlating that to outdoor exposure has been difficult. Here, we use moisture ingress measurements at different temperatures and relative humidities to find fit parameters for a moisture ingress model for an edge-seal material. Then, using meteorological data, a finite element model is used to predict the moisture ingress profiles for hypothetical modules deployed in different climates and mounting conditions, assuming no change in properties of the edge-seal as a function of aging.","PeriodicalId":140444,"journal":{"name":"Optics + Photonics for Sustainable Energy","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122812374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}