None D. Mohamad Ruse, Nidzamuddin Md. Yusof, None N. Sanusi, None J. Karjanto, None M.Z. Hassan, None S. Sulaiman, None Z. Mohd Jawi, None K.A. Abu Kassim
{"title":"Motion Sickness Susceptibility Among Malaysians When Travelling in a Moving Vehicle","authors":"None D. Mohamad Ruse, Nidzamuddin Md. Yusof, None N. Sanusi, None J. Karjanto, None M.Z. Hassan, None S. Sulaiman, None Z. Mohd Jawi, None K.A. Abu Kassim","doi":"10.15282/ijame.20.3.2023.18.0832","DOIUrl":"https://doi.org/10.15282/ijame.20.3.2023.18.0832","url":null,"abstract":"Motion sickness is a common problem when travelling in a moving vehicle, especially on land transportation. This occurrence would signify when users are exposed to unexpected movement in an obstructed view. Each user can experience a different level of motion sickness, depending on their susceptibility. This paper aims to study the motion sickness susceptibility among Malaysians using Motion Sickness Susceptibility Questionnaires (MSSQ-Short). A total of 252 Malaysians (146 males and 106 females) completed a set of questionnaires. The questionnaire was distributed through electronic means such as Facebook, WhatsApp, Twitter, and email and consisted of demographic, MSSQ-Short, travel experience as a driver and passenger, and seating position. This study provides a correlation between experiencing motion sickness between childhood and adulthood (r = 0.124, p < 0.05) for the Malaysian sample. This study concludes that Malaysian susceptibility is higher compared to other countries.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"3 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135215963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
None Ilhamdi, None Gunawarman, None J. Affi, None O. Susanti, None D. Juliadmi, None D. Oktaviana, None M. Tauhid
{"title":"Effect of Bilayer Nano-Micro Hydroxyapatite on the Surface Characteristics of Implanted Ti-6Al-4V ELI","authors":"None Ilhamdi, None Gunawarman, None J. Affi, None O. Susanti, None D. Juliadmi, None D. Oktaviana, None M. Tauhid","doi":"10.15282/ijame.20.3.2023.19.0833","DOIUrl":"https://doi.org/10.15282/ijame.20.3.2023.19.0833","url":null,"abstract":"Ti-6Al-4V ELI is a well-known, popular medical-grade titanium alloy due to its biocompatibility and excellent mechanical properties. However, like other metal implants, it is less bioactive that affects tissue regeneration around the implant, and may lead to implant failure. So, a bioactive substance such as hydroxyapatite (HA) has usually been coated on metal implants to improve its bioactive properties. However, a single layer of HA was reported to be dissolved into body fluid after a long time of exposure in the human body. In this study, bilayer HA was deposited on the surface of screw-type implants made of Ti-6Al-4V ELI through electrophoretic deposition (EPD method. The bottom layer consists of micro-size of HA, and the second layer contains nano-size HA. The suspension contains each micro and nano size of HA powder was homogenized for 1 h followed by sonication for 2 h using a magnetic stirrer. The coating layer was subsequently sintered at 700oC for 1 h. The bilayer-coated screw implant was then implanted into the proximal tibia of health rattus novergicus under proper surgical procedures. Some screws without HA deposition were also implanted into rattus novergicus for comparison. The implanted screws were then taken out via surgery after 2, 3 and 4 weeks, and they were subsequently observed by optical microscope, SEM and XRF. The results showed that organic material is found on each coated specimen, and few HA layer is disintegrated from the surface of the screw. The disintegrated HA remained in the surface of the screw, and the amount of HA increased with increasing implantation time, which indicates the increase of osseointegration between the bone and HA layer. XRF showed a significant difference in Ti and titanium oxide contents on the surface of the coated samples and the non-coted ones, where it is only 0.66%Ti (0.39% TiO2) on the surface of the screw with HA layer and 70%Ti (67% TiO2) for without HA. When TiO2 is formed as a fast self-healing reaction while the screw is exposed to body fluid, the HA acts as an interface against body fluid that may contain aggressive ions. So, HA layer is not only effective against corrosion attack but also inhibits the formation of TiO2 on the implant surface. The coated screws also revealed a strong bonding between the HA layer and the surface of the implant screw. Besides, the ratio between Ca and P elements on the screw surface is in the range of 0.58 – 2.04, which is in the range of bone characteristics.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"12 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135322682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nurul Qastalani Radzuan, Mohd Hasnun Arif Hassan, Mohd Nadzeri Omar, Nur Aqilah Othman, Mohd Amirudin Mohamad Radzi, Khairil Anwar Abu Kassim
{"title":"The Effect of Motorcycle Helmet Type on Head Response in Oblique Impact","authors":"Nurul Qastalani Radzuan, Mohd Hasnun Arif Hassan, Mohd Nadzeri Omar, Nur Aqilah Othman, Mohd Amirudin Mohamad Radzi, Khairil Anwar Abu Kassim","doi":"10.15282/ijame.20.3.2023.20.0834","DOIUrl":"https://doi.org/10.15282/ijame.20.3.2023.20.0834","url":null,"abstract":"In Malaysia, riding motorcycles is a popular mode of transportation, particularly in urban areas where traffic congestion is prevalent. Additionally, motorcycles are relatively affordable and have low fuel consumption, which makes them an attractive option for many. Per Malaysian traffic laws, riders must wear helmets while riding. As a result, various brands and types of helmets are available for purchase. However, with the increasing popularity of online shopping platforms, many individuals opt to purchase helmets online despite the uncertain quality control of these products. This study aims to assess the effectiveness of three different types of motorcycle helmets in protecting the head from injury. The helmet types evaluated in this unbiased study include full-face, open-face, and half-coverage helmets. The head injury predictors used in this study include Peak Linear Acceleration (PLA), Peak Rotational Acceleration (PRA), Head Injury Criterion (HIC), and Brain Injury Criterion (BrIC). Each helmet was subjected to an impact in a controlled environment using a 6-kg cylinder attached to a pendulum arm, with the impact directed at the front of the helmet at a speed of approximately 6 m/s. Full-face and open-face helmets performed exceptionally well in terms of linear parameters (PLA and HIC). The PLA and HIC of half-coverage helmets are nearly 70% and 50% higher than full-face and open-face helmets. All helmets perform poorly against rotational impact (PRA and BrIC). This shows that helmet design needs to be improved to enhance protection against rotational impact. This study represents the first case study in Malaysia to gather mechanical head injury data comparing the protective performance of different helmet types under both linear and rotational impact. These findings may provide a more accurate understanding of helmet performance in protecting against head injuries.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"41 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135322190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarbani Daud, None Mohd Adnin Hamidi, None Rizalman Mamat, None Daing M. Nafiz
{"title":"A Prediction of Graphene Nanoplatelets Addition Effects on Diesel Engine Emissions","authors":"Sarbani Daud, None Mohd Adnin Hamidi, None Rizalman Mamat, None Daing M. Nafiz","doi":"10.15282/ijame.20.3.2023.17.0831","DOIUrl":"https://doi.org/10.15282/ijame.20.3.2023.17.0831","url":null,"abstract":"There are numerous methods for reducing diesel exhaust emissions. Engine modifications, combustion optimization, and exhaust gas treatment are all popular methods. Another proven method uses fuel additives, such as zinc oxide, copper oxide, and magnesium oxide. Those additives are proven to reduce measured emissions such as carbon monoxide and nitrogen oxide successfully; however, there are still concerns about the toxicity of the emissions, which could harm human health. As a result, carbon nanoparticles have been introduced as a fuel additive due to their low risk to human health. Because of advancements in graphene research, a few researchers began investigating the implications of using graphene nanoplatelets as a fuel additive. The study’s findings appeared to be encouraging. However, no additional research has been identified to forecast the impact on engine emissions other than analyzing the effects of graphene additives on engine emissions. The goal of this study is to forecast the effects of graphene nanoplatelets on diesel engine emissions. The emission parameters of the trial were carbon monoxide, carbon dioxide and nitrogen oxide. The factors considered in the experiment are speed, load, and blend concentration. Response surface methodology and contour plots were generated using Minitab software. The results show that the prediction model’s accuracy is within 10% of the experimental data.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"62 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135322847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lovely Son, None M. Rusli, None S.P. Putra, None E. Satria
{"title":"The Effect of Landing Gear Dimension Variation on the Static Strength and Dynamic Response of Unmanned Aerial Vehicle (UAV)","authors":"Lovely Son, None M. Rusli, None S.P. Putra, None E. Satria","doi":"10.15282/ijame.20.3.2023.16.0830","DOIUrl":"https://doi.org/10.15282/ijame.20.3.2023.16.0830","url":null,"abstract":"This research discusses the static and dynamic analysis of the landing gear structure of an unmanned aerial vehicle (UAV). The dimensional study is conducted to investigate the effect of landing gear dimension variation on UAVs’ static strength and dynamic response. Static analysis was performed with Finite Element Method (FEM) software. The dynamic response of the UAV is analyzed using a single-degree-of-freedom vibration model. Based on the static analysis results, the landing gear stiffness and strength can be increased by increasing the width and decreasing the height, radius, and length of the landing gear structure. The energy dissipation in the dynamic analysis is described by hysteresis and viscous damping model. The dynamic response simulation results show that the increase in the stiffness of the landing gear leads to an increase in force transmission and acceleration of the UAV. Furthermore, the UAV response using the viscous damping model can accurately predict the system’s response with the hysteretic damping model for small damping conditions. However, the deviation was observed for large damping conditions.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135943892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Microwave Hybrid Heating on Mechanical Properties and Microstructure of Sn3.0Ag0.5Cu/Cu Solder Joints","authors":"SRA. Idris, MN Mazelan","doi":"10.15282/ijame.20.3.2023.15.0829","DOIUrl":"https://doi.org/10.15282/ijame.20.3.2023.15.0829","url":null,"abstract":"Microwave hybrid heating (MHH) has become soldering’s alternative method for lead-free solder alloys due to its benefits towards modern microtechnology, such as shorter processing time, lower energy consumption and lower defect rate. Nonetheless, it still requires susceptors to improve its heating performance, such as SiC, which is known for its high loss factor under low microwave frequencies. In this study, the effect of microwave hybrid heating on mechanical properties, as well as the microstructure of solder joint between Sn3.0Ag0.5Cu (SAC305) solder alloy and Cu substrate was investigated. Solder joint was created using MHH with different soldering parameters (amount of SiC in a range of 3-7g and exposure time in a range of 7-10min) between SAC305 solder alloy (in the form of wire and paste) and Cu substrate. Then, a lap shear test was carried out following a standard of ASTM D1002 to determine solder joint strength. Characterization was made using an optical microscope and scanning electron microscopy. Results showed that solder wire produced the highest solder joint strength with the value of 115.45 MPa when using 3.05g of SiC for 8.92min soldering time. Meanwhile, the solder paste produced 109.76MPa solder joint strength when using 3.03 g of SiC for 9.39 min soldering time. The intermetallic compound (IMC) form was scallop-like Cu6Sn5, both solder/substrate joints with a thickness of 2.87 μm for solder wire and 3.62 μm for solder paste. Nonetheless, an excessive amount of SiC would generate more heat in MHH and increase the IMC thickness as well as reduce shear strength, which eventually decreases the solder joint stability.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136077337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miminorazeansuhaila Loman, None Z.M. Hafizi, None F. Lamin
{"title":"High-Cycle Fatigue Life Behaviour of Fabricated Glass Fibre-Reinforced Polymer","authors":"Miminorazeansuhaila Loman, None Z.M. Hafizi, None F. Lamin","doi":"10.15282/ijame.20.3.2023.13.0827","DOIUrl":"https://doi.org/10.15282/ijame.20.3.2023.13.0827","url":null,"abstract":"This study focuses on the fatigue behaviour analysis of glass fibre-reinforced polymer (GFRP) composite specimens under high-cycle fatigue loading conditions. Therefore, property validation is recommended in the material development process upon further investigation of the fabricated GRFP. This study aims to evaluate the behaviour of the fabricated GFRP fatigue specimen when subjected to high-cycle fatigue loads and compare it to existing studies. A GFRP fatigue test sample was fabricated using the hand layup process into a flat rectangular panel, which was then cut into a small dimension of 28×2×0.2 cm fatigue specimen. Fatigue tests were performed on five flat specimens at different constant amplitude loads or stress levels between 40% and 80% of ultimate tensile strength to obtain the stress–life curve for the fabricated GFRP. Results showed that the high-stress levels of 80% contributed to the most reduced fatigue life cycle of GFRP. This result is consistent with previous studies and lies within the published life cycle range, validating the fabricated GRFP. A new parameter called the failure modulus, or Mf, may be used to quantify a particular set of fatigue tests.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135760376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Review on Various Control Strategies and Algorithms in Vehicle Suspension Systems","authors":"Aadil Arshad Ferhath, None Kamalakkannan Kasi","doi":"10.15282/ijame.20.3.2023.14.0828","DOIUrl":"https://doi.org/10.15282/ijame.20.3.2023.14.0828","url":null,"abstract":"Automotive suspension systems provide passenger safety, ride comfort and vehicle handling in passenger and commercial vehicles. Through extensive research in the last couple of decades coupled with the recent advancements in technology, the improvement in vehicle handling and ride comfort have been significant by using various control strategies in semi-active and fully active suspension systems. Despite a significant number of articles available on the enhancement and improvement of vehicle suspension systems, there is certainly a lack of knowledge on various control strategies and algorithmic techniques used in the vehicle suspension system. Thereby, to address the gap, this review consecutively attempts to comprehensively explore the various research work conducted on the various control strategies used in vehicle suspension systems.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"233 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135760378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rajasekhara Reddy Mutra, None D Mallikarjuna Reddy, M. Amarnath, None M.N. Abdul Rani, None M.A. Yunus, None M.S.M. Sani
{"title":"Artificial Neural Network-Based Fault Diagnosis of Gearbox using Empirical Mode Decomposition from Vibration Response","authors":"Rajasekhara Reddy Mutra, None D Mallikarjuna Reddy, M. Amarnath, None M.N. Abdul Rani, None M.A. Yunus, None M.S.M. Sani","doi":"10.15282/ijame.20.3.2023.12.0826","DOIUrl":"https://doi.org/10.15282/ijame.20.3.2023.12.0826","url":null,"abstract":"This paper presents a gearbox defect diagnosis based on vibration behaviour. In order to record the vibration response under various circumstances, an industrial gearbox was used as the basis for an experimental setup. The signals resulting from gear wear were processed using an empirical mode decomposition for two operating time intervals (zero-hour running time and thirty-hour running time). The first three intrinsic mode functions and the corresponding frequency response were detected. The ten statistical parameters most sensitive to gear wear were selected using an evaluation method based on Euclidean distance. Using the identified features, an artificial neural network (ANN) was trained to track the gearbox for the selected future data set. The neural network received its input from the statistical parameters, and its output was the number of gearbox running hours. To achieve faster convergence, the radial basis function and the backpropagation neural network were compared. The superiority of the proposed strategy is demonstrated by comparing the performance of ANN. For monitoring the condition of industrial gears, the proposed strategy is found to be effective and trustworthy.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136062475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maidul Islam, Muhammad Abdullah, Alia Farhana Abdul Ghaffar, Salmiah Ahmad
{"title":"Comparison Analysis Between PI and Adaptive Controllers for DC-DC Converter of Hybrid Energy Storage Systems in Electric Vehicles","authors":"Maidul Islam, Muhammad Abdullah, Alia Farhana Abdul Ghaffar, Salmiah Ahmad","doi":"10.15282/ijame.20.3.2023.09.0823","DOIUrl":"https://doi.org/10.15282/ijame.20.3.2023.09.0823","url":null,"abstract":"A power converter is one of the important components in a hybrid electric vehicle (HEV), where it has a strong nonlinear dynamic due to the variation of load demand from different driving modes, namely acceleration, braking and cruising. To adapt with the nonlinearities, this work proposes the use of direct model reference adaptive control (DMRAC) to regulate its operation in tracking the load and current demand of the HEV. To validate the response, the control performance is benchmarked with the commonly used traditional PI controller. The system model includes a battery with a supercapacitor, and its controller was constructed using the MATLAB Simulink platform. Simulation results show that DMRAC provides better performance as compared to the PI controller in two cases, which are tracking the current and load demands according to the root mean square error (RMSE) analysis. Nevertheless, in the presence of disturbance, it is noted that DMRAC is only effective in tracking the current demand while requiring some time to adapt and surpass the PI controller in tracking the load demand. Based on these findings, it can be justified that the DMRAC has the potential to become a good alternative approach to control the HEV power converters, specifically in the presence of disturbance.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"96 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135147298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}