International Journal of Advanced Computer Science and Applications最新文献

筛选
英文 中文
WEB-based Collaborative Platform for College English Teaching 基于网络的大学英语协同教学平台
IF 0.9
International Journal of Advanced Computer Science and Applications Pub Date : 2023-01-01 DOI: 10.14569/ijacsa.2023.0140291
Yuwan Zhang
{"title":"WEB-based Collaborative Platform for College English Teaching","authors":"Yuwan Zhang","doi":"10.14569/ijacsa.2023.0140291","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.0140291","url":null,"abstract":"—At present, colleges and universities are trying to apply online education. The online college English course teaching cooperation platform is an important part of college English teaching. At present, teachers’ scoring method for students’ online examination on this kind of platform is mainly human scoring, which has a low efficiency. In view of this, based on the characteristics of web, this paper constructs an English test paper scoring algorithm based on text matching degree algorithm and improved KNN algorithm. The data analysis type of the algorithm is mainly prescriptive analysis that is, judging whether to give points according to the characteristics of the data. The automation and high efficiency of the algorithm can save a lot of human costs in the field of online education. The experimental results show that the recall rate of the improved KNN scoring algorithm for specific semantic topics is up to 0.9, and only 7.3% of students report that the algorithm misjudges their grades. The results indicate that the algorithm has the potential to be applied to the Web-based college English course teaching collaboration platform and reduce the workload of teachers and improve their efficiency.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"26 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81065802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Survey on Attention-Based Models for Image Captioning 基于注意力的图像字幕模型研究综述
IF 0.9
International Journal of Advanced Computer Science and Applications Pub Date : 2023-01-01 DOI: 10.14569/ijacsa.2023.0140249
Asmaa A. E. Osman, Mohamed A. Wahby Shalaby, Mona M. Soliman, K. Elsayed
{"title":"A Survey on Attention-Based Models for Image Captioning","authors":"Asmaa A. E. Osman, Mohamed A. Wahby Shalaby, Mona M. Soliman, K. Elsayed","doi":"10.14569/ijacsa.2023.0140249","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.0140249","url":null,"abstract":"org","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"84 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81124536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Advances in Machine Learning and Explainable Artificial Intelligence for Depression Prediction 机器学习和可解释的人工智能在抑郁症预测中的进展
IF 0.9
International Journal of Advanced Computer Science and Applications Pub Date : 2023-01-01 DOI: 10.14569/ijacsa.2023.0140656
H. Byeon
{"title":"Advances in Machine Learning and Explainable Artificial Intelligence for Depression Prediction","authors":"H. Byeon","doi":"10.14569/ijacsa.2023.0140656","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.0140656","url":null,"abstract":"There is a growing interest in applying AI technology in the field of mental health, particularly as an alternative to complement the limitations of human analysis, judgment, and accessibility in mental health assessments and treatments. The current mental health treatment service faces a gap in which individuals who need help are not receiving it due to negative perceptions of mental health treatment, lack of professional manpower, and physical accessibility limitations. To overcome these difficulties, there is a growing need for a new approach, and AI technology is being explored as a potential solution. Explainable artificial intelligence (X-AI) with both accuracy and interpretability technology can help improve the accuracy of expert decision-making, increase the accessibility of mental health services, and solve the psychological problems of high-risk groups of depression. In this review, we examine the current use of X-AI technology in mental health assessments for depression. As a result of reviewing 6 studies that used X-AI to discriminate high-risk groups of depression, various algorithms such as SHAP (SHapley Additive exPlanations) and Local Interpretable Model-Agnostic Explanation (LIME) were used for predicting depression. In the field of psychiatry, such as predicting depression, it is crucial to ensure AI prediction justifications are clear and transparent. Therefore, ensuring interpretability of AI models will be important in future research. Keywords—Depression; LIME; Explainable artificial intelligence; Machine learning; SHAP","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78071905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning for Personal Activity Recognition Under More Complex and Different Placement Positions of Smart Phone 深度学习在智能手机更复杂、不同放置位置下的个人活动识别
IF 0.9
International Journal of Advanced Computer Science and Applications Pub Date : 2023-01-01 DOI: 10.14569/ijacsa.2023.0140639
Bhagya Rekha Sangisetti, Suresh Pabboju
{"title":"Deep Learning for Personal Activity Recognition Under More Complex and Different Placement Positions of Smart Phone","authors":"Bhagya Rekha Sangisetti, Suresh Pabboju","doi":"10.14569/ijacsa.2023.0140639","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.0140639","url":null,"abstract":"Personal Activity Recognition (PAR) is an indispensable research area as it is widely used in applications such as security, healthcare, gaming, surveillance and remote patient monitoring. With sensors introduced in smart phones, data collection for PAR made easy. However, PAR is non-trivial and difficult task due to bulk of data to be processed, complexity and sensor placement positions. Deep learning is found to be scalable and efficient in processing such data. However, the main problem with existing solutions is that, they could recognize up to 6 or 8 actions only. Besides, they suffer from accurate recognition of other actions and also deal with complexity and different placement positions of smart phone. To address this problem, in this paper, we proposed a framework named Robust Deep Personal Action Recognition Framework (RDPARF) which is based on enhanced Convolutional Neural Network (CNN) model which is trained to recognize 12 actions. RDPARF is realized with our proposed algorithm known as Enhanced CNN for Robust Personal Activity Recognition (ECNN-RPAR). This algorithm has provision for early stopping checkpoint to optimize resource consumption and faster convergence. Experiments are made with MHealth benchmark dataset collected from UCI repository. Our empirical results revealed that ECNN-RPAR could recognize 12 actions under more complex and different placement positions of smart phone besides outperforming the state of the art exhibiting highest accuracy with 96.25%. Keywords—Human activity recognition; deep learning; CNN; MHealth dataset; artificial intelligence","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"71 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78138366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Method for Network Intrusion Detection Based on GAN-CNN-BiLSTM 基于GAN-CNN-BiLSTM的网络入侵检测方法
IF 0.9
International Journal of Advanced Computer Science and Applications Pub Date : 2023-01-01 DOI: 10.14569/ijacsa.2023.0140554
Shuangyuan Li, Qichang Li, Meng Li
{"title":"A Method for Network Intrusion Detection Based on GAN-CNN-BiLSTM","authors":"Shuangyuan Li, Qichang Li, Meng Li","doi":"10.14569/ijacsa.2023.0140554","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.0140554","url":null,"abstract":"—As network attacks are more and more frequent and network security is more and more serious, it is important to detect network intrusion accurately and efficiently. With the continuous development of deep learning, a lot of research achievements are applied to intrusion detection. Deep learning is more accurate than machine learning, but in the face of a large amount of data learning, the performance will be degraded due to data imbalance. In view of the serious imbalance of network traffic data sets at present, this paper proposes to process data expansion with GAN to solve data imbalance and detect network intrusion in combination with CNN and BiLSTM. In order to verify the efficiency of the model, the CIC-IDS 2017 data set is used for evaluation, and the model is compared with machine learning methods such as Random Forest and Decision Tree. The experiment shows that the performance of this model is significantly improved over other traditional models, and the GAN-CNN-BiLSTM model can improve the efficiency of intrusion detection, and its overall accuracy is improved compared with SVM, DBN, CNN, BiLSTM and other models.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"51 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74080741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Software Effort Estimation through Ensembling of Base Models in Machine Learning using a Voting Estimator 基于投票估计器的机器学习基本模型集成的软件工作量估计
IF 0.9
International Journal of Advanced Computer Science and Applications Pub Date : 2023-01-01 DOI: 10.14569/ijacsa.2023.0140222
Beesetti Kiran Kumar, Saurabh Bilgaiyan, B. Mishra
{"title":"Software Effort Estimation through Ensembling of Base Models in Machine Learning using a Voting Estimator","authors":"Beesetti Kiran Kumar, Saurabh Bilgaiyan, B. Mishra","doi":"10.14569/ijacsa.2023.0140222","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.0140222","url":null,"abstract":"—For a long time, researchers have been working to predict the effort of software development with the help of various machine learning algorithms. These algorithms are known for better understanding the underlying facts inside the data and improving the prediction rate than conventional approaches such as line of code and functional point approaches. According to no free lunch theory, there is no single algorithm which gives better predictions on all the datasets. To remove this bias our work aims to provide a better model for software effort estimation and thereby reduce the distance between the actual and predicted effort for future projects. The authors proposed an ensembling of regressor models using voting estimator for better predictions to reduce the error rate to over the biasness provide by single machine learning algorithm. The results obtained show that the ensemble models were better than those from the single models used on different datasets.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"21 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73155373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anomalous Taxi Trajectory Detection using Popular Routes in Different Traffic Periods 基于不同交通时段通行路线的出租车异常轨迹检测
IF 0.9
International Journal of Advanced Computer Science and Applications Pub Date : 2023-01-01 DOI: 10.14569/ijacsa.2023.0140739
Lina Xu, Yonglong Luo, Qingying Yu, Xiao Zhang, Wen Zhang, Zhonghao Lu
{"title":"Anomalous Taxi Trajectory Detection using Popular Routes in Different Traffic Periods","authors":"Lina Xu, Yonglong Luo, Qingying Yu, Xiao Zhang, Wen Zhang, Zhonghao Lu","doi":"10.14569/ijacsa.2023.0140739","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.0140739","url":null,"abstract":"—Anomalous trajectory detection is an important approach to detecting taxi fraud behaviors in urban traffic systems. The existing methods usually ignore the integration of the trajectory access location with the time and trajectory structure, which incorrectly detects normal trajectories that bypass the congested road as anomalies and ignores circuitous travel of trajectories. Therefore, this study proposes an anomalous trajectory detection algorithm using the popular routes in different traffic periods to solve this problem. First, to obtain popular routes in different time periods, this study divides the time according to the time distribution of the traffic trajectories. Second, the spatiotemporal frequency values of the nodes are obtained by combining the trajectory point moments and time span to exclude the interference of the temporal anomaly trajectory on the frequency. Finally, a gridded distance measurement method is designed to quantitatively measure the anomaly between the trajectory and the popular routes by combining the trajectory position and trajectory structure. Extensive experiments are conducted on real taxi trajectory datasets; the results show that the proposed method can effectively detect anomalous trajectories. Compared to the baseline algorithms, the proposed algorithm has a shorter running time and a significant improvement in F-Score , with the highest improvement rate of 7.9%, 5.6%, and 10.7%, respectively.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"152 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73716696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Music Note Feature Recognition Method based on Hilbert Space Method Fused with Partial Differential Equations 基于Hilbert空间法与偏微分方程融合的音符特征识别方法
IF 0.9
International Journal of Advanced Computer Science and Applications Pub Date : 2023-01-01 DOI: 10.14569/ijacsa.2023.0140217
Liqin Liu
{"title":"Music Note Feature Recognition Method based on Hilbert Space Method Fused with Partial Differential Equations","authors":"Liqin Liu","doi":"10.14569/ijacsa.2023.0140217","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.0140217","url":null,"abstract":"—Hilbert space method is an old mathematical theoretical model developed based on linear algebra and has a high theoretical value and practical application. The basic idea of the Hilbert space method is to use the existence of some stable relationship between variables and to use the dynamic dependence between variables to construct the solution of differential equations, thus transforming mathematical problems into algebraic problems. This paper firstly studies the denoising model in the process of music note feature recognition based on partial differential equations, then analyzes the denoising method based on partial differential equations and gives an algorithm for fused music note feature recognition in Hilbert space; secondly, this paper studies the commonly used music note feature recognition methods, including linear predictive cepstral coefficients, Mel frequency cepstral coefficients, wavelet transform-based feature extraction methods and Hilbert space-based feature extraction methods. Their corresponding feature extraction processes are given.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"313 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75011929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Study on Medical Image Segmentation using Deep Neural Networks 基于深度神经网络的医学图像分割综合研究
IF 0.9
International Journal of Advanced Computer Science and Applications Pub Date : 2023-01-01 DOI: 10.14569/ijacsa.2023.0140319
L. Dao, N. Ly
{"title":"A Comprehensive Study on Medical Image Segmentation using Deep Neural Networks","authors":"L. Dao, N. Ly","doi":"10.14569/ijacsa.2023.0140319","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.0140319","url":null,"abstract":"—Over the past decade, Medical Image Segmentation (MIS) using Deep Neural Networks (DNNs) has achieved significant performance improvements and holds great promise for future developments. This paper presents a comprehensive study on MIS based on DNNs. Intelligent Vision Systems are often evaluated based on their output levels, such as Data, Information, Knowledge, Intelligence, and Wisdom (DIKIW), and the state-of-the-art solutions in MIS at these levels are the focus of research. Additionally, Explainable Artificial Intelligence (XAI) has become an important research direction, as it aims to uncover the \"black box\" nature of previous DNN architectures to meet the requirements of transparency and ethics. The study emphasizes the importance of MIS in disease diagnosis and early detection, particularly for increasing the survival rate of cancer patients through timely diagnosis. XAI and early prediction are considered two important steps in the journey from \"intelligence\" to \"wisdom.\" Additionally, the paper addresses existing challenges and proposes potential solutions to enhance the efficiency of implementing DNN-based MIS.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"22 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75043891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
SLAM Mapping Method of Laser Radar for Tobacco Production Line Inspection Robot Based on Improved RBPF 基于改进RBPF的烟草生产线检测机器人激光雷达SLAM制图方法
IF 0.9
International Journal of Advanced Computer Science and Applications Pub Date : 2023-01-01 DOI: 10.14569/ijacsa.2023.0140894
Zhiyuan Liang, Pengtao He, Wenbin Liang, Xiaolei Zhao, Bin Wei
{"title":"SLAM Mapping Method of Laser Radar for Tobacco Production Line Inspection Robot Based on Improved RBPF","authors":"Zhiyuan Liang, Pengtao He, Wenbin Liang, Xiaolei Zhao, Bin Wei","doi":"10.14569/ijacsa.2023.0140894","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.0140894","url":null,"abstract":"—The study focuses on the laser radar SLAM mapping method employed by the tobacco production line inspection robot, utilizing an enhanced RBPF approach. It involves the construction of a well-structured two-dimensional map of the inspection environment for the tobacco production line inspection robot. This construction aims to ensure the seamless execution of inspection tasks along the tobacco production line. The fusion of wheel odometer and IMU data is accomplished using the extended Kalman filter algorithm, wherein the resulting fused odometer motion model and LiDAR observation model jointly serve as the hybrid proposal distribution. In the hybrid proposal distribution, the iterative nearest point method is used to find the sampling particles in the high probability area, and the matching score during particle matching scanning is used as the fitness value, and the Drosophila optimization strategy is used to adjust the particle distribution. Then, the weight of each particle after optimization is solved, and the particles are adaptively resampled according to the size of the weight after solution, and the inspection map of the inspection robot of the tobacco production line is updated according to the updated position and posture information and observation information of the particles of the inspection robot of the tobacco production line. The experimental results show that this method can realize the laser radar SLAM mapping of the tobacco production line inspection robot, and it can build a more ideal two-dimensional map of the inspection environment of the tobacco production line inspection robot with fewer particles. If it is applied to practical work, a more ideal work effect can be achieved.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"112 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82258921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信