{"title":"基于兴趣和情感的个性化音乐推荐:多种算法的比较","authors":"Xiuli Yan","doi":"10.14569/ijacsa.2023.0140426","DOIUrl":null,"url":null,"abstract":"Recommendation algorithms can greatly improve the efficiency of information retrieval for users. This article briefly introduced recommendation algorithms based on association rules and algorithms based on interest and emotion analysis. After crawling music and comment data from the NetEase Cloud platform, a simulation experiment was conducted. Firstly, the performance of the Back-Propagation Neural Network (BPNN) in the interest and emotion-based algorithm for recommending music was tested, and then the impact of the proportion of emotion weight between comments and music on the emotion analysis-based algorithm was tested. Finally, the three recommendation algorithms based on association rules, user ratings, and interest and emotion analysis were compared. The results showed that when the BPNN used the dominant interest and emotion and secondary interest and emotion as judgment criteria, the accuracy of interest and emotion recognition for music and comments was higher. When the proportion of interest and emotion weight between comments and music was 6:4, the interest and emotion analysis-based recommendation algorithm had the highest accuracy. The interest and emotion-based recommendation algorithm had higher recommendation accuracy than the association rule-based and user rating-based algorithms, and could provide users with more personalized and emotional music recommendations. Keywords—Interest and emotion; recommendation algorithm; music; personalization","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"9 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized Music Recommendation Based on Interest and Emotion: A Comparison of Multiple Algorithms\",\"authors\":\"Xiuli Yan\",\"doi\":\"10.14569/ijacsa.2023.0140426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommendation algorithms can greatly improve the efficiency of information retrieval for users. This article briefly introduced recommendation algorithms based on association rules and algorithms based on interest and emotion analysis. After crawling music and comment data from the NetEase Cloud platform, a simulation experiment was conducted. Firstly, the performance of the Back-Propagation Neural Network (BPNN) in the interest and emotion-based algorithm for recommending music was tested, and then the impact of the proportion of emotion weight between comments and music on the emotion analysis-based algorithm was tested. Finally, the three recommendation algorithms based on association rules, user ratings, and interest and emotion analysis were compared. The results showed that when the BPNN used the dominant interest and emotion and secondary interest and emotion as judgment criteria, the accuracy of interest and emotion recognition for music and comments was higher. When the proportion of interest and emotion weight between comments and music was 6:4, the interest and emotion analysis-based recommendation algorithm had the highest accuracy. The interest and emotion-based recommendation algorithm had higher recommendation accuracy than the association rule-based and user rating-based algorithms, and could provide users with more personalized and emotional music recommendations. Keywords—Interest and emotion; recommendation algorithm; music; personalization\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.0140426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Personalized Music Recommendation Based on Interest and Emotion: A Comparison of Multiple Algorithms
Recommendation algorithms can greatly improve the efficiency of information retrieval for users. This article briefly introduced recommendation algorithms based on association rules and algorithms based on interest and emotion analysis. After crawling music and comment data from the NetEase Cloud platform, a simulation experiment was conducted. Firstly, the performance of the Back-Propagation Neural Network (BPNN) in the interest and emotion-based algorithm for recommending music was tested, and then the impact of the proportion of emotion weight between comments and music on the emotion analysis-based algorithm was tested. Finally, the three recommendation algorithms based on association rules, user ratings, and interest and emotion analysis were compared. The results showed that when the BPNN used the dominant interest and emotion and secondary interest and emotion as judgment criteria, the accuracy of interest and emotion recognition for music and comments was higher. When the proportion of interest and emotion weight between comments and music was 6:4, the interest and emotion analysis-based recommendation algorithm had the highest accuracy. The interest and emotion-based recommendation algorithm had higher recommendation accuracy than the association rule-based and user rating-based algorithms, and could provide users with more personalized and emotional music recommendations. Keywords—Interest and emotion; recommendation algorithm; music; personalization
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications