Nazirah Abd. Hamid, S. R. Selamat, R. Ahmad, M. Mohamad
{"title":"降低角色挖掘可扩展性的汉明距离方法","authors":"Nazirah Abd. Hamid, S. R. Selamat, R. Ahmad, M. Mohamad","doi":"10.14569/ijacsa.2023.0140654","DOIUrl":null,"url":null,"abstract":"Role-based Access Control has become the standard of practice for many organizations for restricting control on limited resources in complicated infrastructures or systems. The main objective of the role mining development is to define appropriate roles that can be applied to the specified security access policies. However, the mining scales in this kind of setting are extensive and can cause a huge load on the management of the systems. To resolve the above mentioned problems, this paper proposes a model that implements Hamming Distance approach by rearranging the existing matrix as the input data to overcome the scalability problem. The findings of the model show that the generated file size of all datasets substantially have been reduced compared to the original datasets It has also shown that Hamming Distance technique can successfully reduce the mining scale of datasets ranging between 30% and 47% and produce better candidate roles. Keywords—Role-based Access Control; role mining; hamming distance; data mining","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"116 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hamming Distance Approach to Reduce Role Mining Scalability\",\"authors\":\"Nazirah Abd. Hamid, S. R. Selamat, R. Ahmad, M. Mohamad\",\"doi\":\"10.14569/ijacsa.2023.0140654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Role-based Access Control has become the standard of practice for many organizations for restricting control on limited resources in complicated infrastructures or systems. The main objective of the role mining development is to define appropriate roles that can be applied to the specified security access policies. However, the mining scales in this kind of setting are extensive and can cause a huge load on the management of the systems. To resolve the above mentioned problems, this paper proposes a model that implements Hamming Distance approach by rearranging the existing matrix as the input data to overcome the scalability problem. The findings of the model show that the generated file size of all datasets substantially have been reduced compared to the original datasets It has also shown that Hamming Distance technique can successfully reduce the mining scale of datasets ranging between 30% and 47% and produce better candidate roles. Keywords—Role-based Access Control; role mining; hamming distance; data mining\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.0140654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Hamming Distance Approach to Reduce Role Mining Scalability
Role-based Access Control has become the standard of practice for many organizations for restricting control on limited resources in complicated infrastructures or systems. The main objective of the role mining development is to define appropriate roles that can be applied to the specified security access policies. However, the mining scales in this kind of setting are extensive and can cause a huge load on the management of the systems. To resolve the above mentioned problems, this paper proposes a model that implements Hamming Distance approach by rearranging the existing matrix as the input data to overcome the scalability problem. The findings of the model show that the generated file size of all datasets substantially have been reduced compared to the original datasets It has also shown that Hamming Distance technique can successfully reduce the mining scale of datasets ranging between 30% and 47% and produce better candidate roles. Keywords—Role-based Access Control; role mining; hamming distance; data mining
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications