Interface Focus最新文献

筛选
英文 中文
First-order ultrasensitivity in phosphorylation cycles. 磷酸化循环中的一阶超灵敏度
IF 4.4 3区 生物学
Interface Focus Pub Date : 2024-02-09 eCollection Date: 2024-02-15 DOI: 10.1098/rsfs.2023.0045
Michael A Kochen, Joseph L Hellerstein, Herbert M Sauro
{"title":"First-order ultrasensitivity in phosphorylation cycles.","authors":"Michael A Kochen, Joseph L Hellerstein, Herbert M Sauro","doi":"10.1098/rsfs.2023.0045","DOIUrl":"10.1098/rsfs.2023.0045","url":null,"abstract":"<p><p>Cellular signal transduction takes place through a network of phosphorylation cycles. These pathways take the form of a multi-layered cascade of cycles. This work focuses on the sensitivity of single, double and <i>n</i> length cycles. Cycles that operate in the zero-order regime can become sensitive to changes in signal, resulting in zero-order ultrasensitivity (ZOU). Using frequency analysis, we confirm previous efforts that cascades can act as noise filters by computing the bandwidth. We show that <i>n</i> length cycles display what we term first-order ultrasensitivity which occurs even when the cycles are not operating in the zero-order regime. The magnitude of the sensitivity, however, has an upper bound equal to the number of cycles. It is known that ZOU can be significantly reduced in the presence of retroactivity. We show that the first-order ultrasensitivity is immune to retroactivity and that the ZOU and first-order ultrasensitivity can be blended to create systems with constant sensitivity over a wider range of signal. We show that the ZOU in a double cycle is only modestly higher compared with a single cycle. We therefore speculate that the double cycle has evolved to enable amplification even in the face of retroactivity.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"14 1","pages":"20230045"},"PeriodicalIF":4.4,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853695/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139722423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal enzyme profiles in unbranched metabolic pathways. 无分支代谢途径中的最佳酶谱。
IF 4.4 3区 生物学
Interface Focus Pub Date : 2024-02-09 eCollection Date: 2024-02-15 DOI: 10.1098/rsfs.2023.0029
Elad Noor, Wolfram Liebermeister
{"title":"Optimal enzyme profiles in unbranched metabolic pathways.","authors":"Elad Noor, Wolfram Liebermeister","doi":"10.1098/rsfs.2023.0029","DOIUrl":"10.1098/rsfs.2023.0029","url":null,"abstract":"<p><p>How to optimize the allocation of enzymes in metabolic pathways has been a topic of study for many decades. Although the general problem is complex and nonlinear, we have previously shown that it can be solved by convex optimization. In this paper, we focus on unbranched metabolic pathways with simplified enzymatic rate laws and derive analytic solutions to the optimization problem. We revisit existing solutions based on the limit of mass-action rate laws and present new solutions for other rate laws. Furthermore, we revisit a known relationship between flux control coefficients and enzyme abundances in optimal metabolic states. We generalize this relationship to models with density constraints on enzymes and metabolites, and present a new local relationship between optimal reaction elasticities and enzyme amounts. Finally, we apply our theory to derive simple kinetics-based formulae for protein allocation during bacterial growth.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"14 1","pages":"20230029"},"PeriodicalIF":4.4,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139722424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FK-means: automatic atrial fibrosis segmentation using fractal-guided K-means clustering with Voronoi-clipping feature extraction of anatomical structures. FK-means:利用分形引导的 K-means 聚类和解剖结构的 Voronoi-clipping 特征提取,自动进行心房纤维化分割。
IF 4.4 3区 生物学
Interface Focus Pub Date : 2023-12-15 eCollection Date: 2023-12-06 DOI: 10.1098/rsfs.2023.0033
Marjan Firouznia, Markus Henningsson, Carl-Johan Carlhäll
{"title":"FK-means: automatic atrial fibrosis segmentation using fractal-guided K-means clustering with Voronoi-clipping feature extraction of anatomical structures.","authors":"Marjan Firouznia, Markus Henningsson, Carl-Johan Carlhäll","doi":"10.1098/rsfs.2023.0033","DOIUrl":"10.1098/rsfs.2023.0033","url":null,"abstract":"<p><p>Assessment of left atrial (LA) fibrosis from late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) adds to the management of patients with atrial fibrillation. However, accurate assessment of fibrosis in the LA wall remains challenging. Excluding anatomical structures in the LA proximity using clipping techniques can reduce misclassification of LA fibrosis. A novel FK-means approach for combined automatic clipping and automatic fibrosis segmentation was developed. This approach combines a feature-based Voronoi diagram with a hierarchical 3D K-means fractal-based method. The proposed automatic Voronoi clipping method was applied on LGE-MRI data and achieved a Dice score of 0.75, similar to the score obtained by a deep learning method (3D UNet) for clipping (0.74). The automatic fibrosis segmentation method, which uses the Voronoi clipping method, achieved a Dice score of 0.76. This outperformed a 3D UNet method for clipping and fibrosis classification, which had a Dice score of 0.69. Moreover, the proposed automatic fibrosis segmentation method achieved a Dice score of 0.90, using manual clipping of anatomical structures. The findings suggest that the automatic FK-means analysis approach enables reliable LA fibrosis segmentation and that clipping of anatomical structures in the atrial proximity can add to the assessment of atrial fibrosis.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"13 6","pages":"20230033"},"PeriodicalIF":4.4,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722213/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138794827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating pro-arrhythmogenic effects of the T634S-hERG mutation: insights from a simulation study. 评估 T634S-hERG 突变的致心律失常效应:模拟研究的启示。
IF 4.4 3区 生物学
Interface Focus Pub Date : 2023-12-15 eCollection Date: 2023-12-06 DOI: 10.1098/rsfs.2023.0035
Wei Hu, Wenfeng Zhang, Kevin Zhang, Ehab Al-Moubarak, Yihong Zhang, Stephen C Harmer, Jules C Hancox, Henggui Zhang
{"title":"Evaluating pro-arrhythmogenic effects of the T634S-hERG mutation: insights from a simulation study.","authors":"Wei Hu, Wenfeng Zhang, Kevin Zhang, Ehab Al-Moubarak, Yihong Zhang, Stephen C Harmer, Jules C Hancox, Henggui Zhang","doi":"10.1098/rsfs.2023.0035","DOIUrl":"10.1098/rsfs.2023.0035","url":null,"abstract":"<p><p>A mutation to serine of a conserved threonine (T634S) in the hERG K<sup>+</sup> channel S6 pore region has been identified as a variant of uncertain significance, showing a loss-of-function effect. However, its potential consequences for ventricular excitation and arrhythmogenesis have not been reported. This study evaluated possible functional effects of the T634S-hERG mutation on ventricular excitation and arrhythmogenesis by using multi-scale computer models of the human ventricle. A Markov chain model of the rapid delayed rectifier potassium current (I<sub>Kr</sub>) was reconstructed for wild-type and T634S-hERG mutant conditions and incorporated into the ten Tusscher <i>et al</i>. models of human ventricles at cell and tissue (1D, 2D and 3D) levels. Possible functional impacts of the T634S-hERG mutation were evaluated by its effects on action potential durations (APDs) and their rate-dependence (APDr) at the cell level; and on the QT interval of pseudo-ECGs, tissue vulnerability to unidirectional conduction block (VW), spiral wave dynamics and repolarization dispersion at the tissue level. It was found that the T634S-hERG mutation prolonged cellular APDs, steepened APDr, prolonged the QT interval, increased VW, destablized re-entry and augmented repolarization dispersion across the ventricle. Collectively, these results imply potential pro-arrhythmic effects of the T634S-hERG mutation, consistent with LQT2.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"13 6","pages":"20230035"},"PeriodicalIF":4.4,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138794824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pirfenidone increases transverse tubule length in the infarcted rat myocardium. 吡非尼酮能增加梗死大鼠心肌横向小管的长度。
IF 4.4 3区 生物学
Interface Focus Pub Date : 2023-12-15 eCollection Date: 2023-12-06 DOI: 10.1098/rsfs.2023.0047
Hussam Moammer, Jizhong Bai, Timothy L M Jones, Marie Ward, Caroyln Barrett, David J Crossman
{"title":"Pirfenidone increases transverse tubule length in the infarcted rat myocardium.","authors":"Hussam Moammer, Jizhong Bai, Timothy L M Jones, Marie Ward, Caroyln Barrett, David J Crossman","doi":"10.1098/rsfs.2023.0047","DOIUrl":"https://doi.org/10.1098/rsfs.2023.0047","url":null,"abstract":"<p><p>Transverse (t)-tubule remodelling is a prominent feature of heart failure with reduced ejection fraction (HFrEF). In our previous research, we identified an increased amount of collagen within the t-tubules of HFrEF patients, suggesting fibrosis could contribute to the remodelling of t-tubules. In this research, we tested this hypothesis in a rodent model of myocardial infarction induced heart failure that was treated with the anti-fibrotic pirfenidone. Confocal microscopy demonstrated loss of t-tubules within the border zone region of the infarct. This was documented as a reduction in t-tubule frequency, area, length, and transverse elements. Eight weeks of pirfenidone treatment was able to significantly increase the area and length of the t-tubules within the border zone. Echocardiography showed no improvement with pirfenidone treatment. Surprisingly, pirfenidone significantly increased the thickness of the t-tubules in the remote left ventricle of heart failure animals. Dilation of t-tubules is a common feature in heart failure suggesting this may negatively impact function but there was no functional loss associated with pirfenidone treatment. However, due to the relatively short duration of treatment compared to that used clinically, the impact of long-term treatment on t-tubule structure should be investigated in future studies.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"13 6","pages":"20230047"},"PeriodicalIF":4.4,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722216/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138794910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous data assimilation and cardiac electrophysiology model correction using differentiable physics and deep learning. 利用可微分物理学和深度学习同时进行数据同化和心脏电生理学模型校正。
IF 3.6 3区 生物学
Interface Focus Pub Date : 2023-12-15 eCollection Date: 2023-12-06 DOI: 10.1098/rsfs.2023.0043
Victoriya Kashtanova, Mihaela Pop, Ibrahim Ayed, Patrick Gallinari, Maxime Sermesant
{"title":"Simultaneous data assimilation and cardiac electrophysiology model correction using differentiable physics and deep learning.","authors":"Victoriya Kashtanova, Mihaela Pop, Ibrahim Ayed, Patrick Gallinari, Maxime Sermesant","doi":"10.1098/rsfs.2023.0043","DOIUrl":"10.1098/rsfs.2023.0043","url":null,"abstract":"<p><p>Modelling complex systems, like the human heart, has made great progress over the last decades. Patient-specific models, called 'digital twins', can aid in diagnosing arrhythmias and personalizing treatments. However, building highly accurate predictive heart models requires a delicate balance between mathematical complexity, parameterization from measurements and validation of predictions. Cardiac electrophysiology (EP) models range from complex biophysical models to simplified phenomenological models. Complex models are accurate but computationally intensive and challenging to parameterize, while simplified models are computationally efficient but less realistic. In this paper, we propose a hybrid approach by leveraging deep learning to complete a simplified cardiac model from data. Our novel framework has two components, decomposing the dynamics into a physics based and a data-driven term. This construction allows our framework to learn from data of different complexity, while simultaneously estimating model parameters. First, using <i>in silico</i> data, we demonstrate that this framework can reproduce the complex dynamics of cardiac transmembrane potential even in the presence of noise in the data. Second, using <i>ex vivo</i> optical data of action potentials (APs), we demonstrate that our framework can identify key physical parameters for anatomical zones with different electrical properties, as well as to reproduce the AP wave characteristics obtained from various pacing locations. Our physics-based data-driven approach may improve cardiac EP modelling by providing a robust biophysical tool for predictions.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"13 6","pages":"20230043"},"PeriodicalIF":3.6,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138794915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modifications of long-term heart rate variability produced in an experimental model of diet-induced metabolic syndrome. 饮食诱发代谢综合征实验模型中长期心率变异性的改变。
IF 3.6 3区 生物学
Interface Focus Pub Date : 2023-12-15 eCollection Date: 2023-12-06 DOI: 10.1098/rsfs.2023.0030
W M Lozano, J E Ortiz-Guzmán, O Arias-Mutis, A Bizy, P Genovés, L Such-Miquel, A Alberola, F J Chorro, M Zarzoso, C J Calvo
{"title":"Modifications of long-term heart rate variability produced in an experimental model of diet-induced metabolic syndrome.","authors":"W M Lozano, J E Ortiz-Guzmán, O Arias-Mutis, A Bizy, P Genovés, L Such-Miquel, A Alberola, F J Chorro, M Zarzoso, C J Calvo","doi":"10.1098/rsfs.2023.0030","DOIUrl":"10.1098/rsfs.2023.0030","url":null,"abstract":"<p><p>Metabolic syndrome (MetS) has been linked to a higher prevalence of cardiac arrhythmias, the most frequent being atrial fibrillation, but the mechanisms are not well understood. One possible underlying mechanism may be an abnormal modulation of autonomic nervous system activity, which can be quantified by analysing heart rate variability (HRV). Our aim was to investigate the modifications of long-term HRV in an experimental model of diet-induced MetS to identify the early changes in HRV and the link between autonomic dysregulation and MetS components. NZW rabbits were randomly assigned to control (<i>n</i> = 10) or MetS (<i>n</i> = 10) groups, fed 28 weeks with high-fat, high-sucrose diet. 24-hour recordings were used to analyse HRV at week 28 using time-domain, frequency-domain and nonlinear analyses. Time-domain analysis showed a decrease in RR interval and triangular index (Ti). In the frequency domain, we found a decrease in the low frequency band. Nonlinear analyses showed a decrease in DFA-α1 and DFA-α2 (detrended fluctuations analysis) and maximum multiscale entropy. The strongest association between HRV parameters and markers of MetS was found between Ti and mean arterial pressure, and Ti and left atrial diameter, which could point towards the initial changes induced by the autonomic imbalance in MetS.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"13 6","pages":"20230030"},"PeriodicalIF":3.6,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722215/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138794995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chamber-specific wall thickness features in human atrial fibrillation. 人类心房颤动的室壁厚度特征
IF 4.4 3区 生物学
Interface Focus Pub Date : 2023-12-15 eCollection Date: 2023-12-06 DOI: 10.1098/rsfs.2023.0044
Jichao Zhao, James Kennelly, Aaqel Nalar, Anuradha Kulathilaka, Roshan Sharma, Jieyun Bai, Ning Li, Vadim V Fedorov
{"title":"Chamber-specific wall thickness features in human atrial fibrillation.","authors":"Jichao Zhao, James Kennelly, Aaqel Nalar, Anuradha Kulathilaka, Roshan Sharma, Jieyun Bai, Ning Li, Vadim V Fedorov","doi":"10.1098/rsfs.2023.0044","DOIUrl":"10.1098/rsfs.2023.0044","url":null,"abstract":"<p><p>Persistent atrial fibrillation (AF) is not effectively treated due to a lack of adequate tools for identifying patient-specific AF substrates. Recent studies revealed that in 30-50% of patients, persistent AF is maintained by localized drivers not only in the left atrium (LA) but also in the right atrium (RA). The chamber-specific atrial wall thickness (AWT) features underlying AF remain elusive, though the important role of AWT in AF is widely acknowledged. We aimed to provide direct evidence of the existence of distinguished RA and LA AWT features underlying AF drivers by analysing functionally and structurally mapped human hearts <i>ex vivo</i>. Coronary-perfused intact human atria (<i>n</i> = 7, 47 ± 14 y.o.; two female) were mapped using panoramic near-infrared optical mapping during pacing-induced AF. Then the hearts were imaged at approximately 170 µm<sup>3</sup> resolution by 9.4 T gadolinium-enhanced MRI. The heart was segmented, and 3D AWT throughout atrial chambers was estimated and analysed. Optical mapping identified six localized RA re-entrant drivers in four hearts and four LA drivers in three hearts. All RA AF drivers were anchored to the pectinate muscle junctions with the crista terminalis or atrial walls. The four LA AF drivers were in the posterior LA. RA (<i>n</i> = 4) with AF drivers were thicker with greater AWT variation than RA (<i>n</i> = 3) without drivers (5.4 ± 2.6 mm versus 5.0 ± 2.4 mm, <i>T</i>-test <i>p</i> < 0.05; <i>F</i>-test <i>p</i> < 0.05). Furthermore, AWT in RA driver regions was thicker and varied more than in RA non-driver regions (5.1 ± 2.5 mm versus 4.4 ± 2.2 mm, <i>T</i>-test <i>p</i> < 0.05; <i>F</i>-test <i>p</i> < 0.05). On the other hand, LA (<i>n</i> = 3) with drivers was thinner than the LA (<i>n</i> = 4) without drivers. In particular, LA driver regions were thinner than the rest of LA regions (3.4 ± 1.0 mm versus 4.2 ± 1.0 mm, <i>T</i>-test <i>p</i> < 0.05). This study demonstrates chamber-specific AWT features of AF drivers. In RA, driver regions are thicker and have more variable AWT than non-driver regions. By contrast, LA drivers are thinner than non-drivers. Robust evaluation of patient-specific AWT features should be considered for chamber-specific targeted ablation.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"13 6","pages":"20230044"},"PeriodicalIF":4.4,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722209/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138794725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing bilayer and volumetric atrial models at scale. 按比例构建双层和容积心房模型。
IF 4.4 3区 生物学
Interface Focus Pub Date : 2023-12-15 eCollection Date: 2023-12-06 DOI: 10.1098/rsfs.2023.0038
Caroline H Roney, Jose Alonso Solis Lemus, Carlos Lopez Barrera, Alexander Zolotarev, Onur Ulgen, Eric Kerfoot, Laura Bevis, Semhar Misghina, Caterina Vidal Horrach, Ovais A Jaffery, Mahmoud Ehnesh, Cristobal Rodero, Dhani Dharmaprani, Gonzalo R Ríos-Muñoz, Anand Ganesan, Wilson W Good, Aurel Neic, Gernot Plank, Luuk H G A Hopman, Marco J W Götte, Shohreh Honarbakhsh, Sanjiv M Narayan, Edward Vigmond, Steven Niederer
{"title":"Constructing bilayer and volumetric atrial models at scale.","authors":"Caroline H Roney, Jose Alonso Solis Lemus, Carlos Lopez Barrera, Alexander Zolotarev, Onur Ulgen, Eric Kerfoot, Laura Bevis, Semhar Misghina, Caterina Vidal Horrach, Ovais A Jaffery, Mahmoud Ehnesh, Cristobal Rodero, Dhani Dharmaprani, Gonzalo R Ríos-Muñoz, Anand Ganesan, Wilson W Good, Aurel Neic, Gernot Plank, Luuk H G A Hopman, Marco J W Götte, Shohreh Honarbakhsh, Sanjiv M Narayan, Edward Vigmond, Steven Niederer","doi":"10.1098/rsfs.2023.0038","DOIUrl":"10.1098/rsfs.2023.0038","url":null,"abstract":"<p><p>To enable large <i>in silico</i> trials and personalized model predictions on clinical timescales, it is imperative that models can be constructed quickly and reproducibly. First, we aimed to overcome the challenges of constructing cardiac models at scale through developing a robust, open-source pipeline for bilayer and volumetric atrial models. Second, we aimed to investigate the effects of fibres, fibrosis and model representation on fibrillatory dynamics. To construct bilayer and volumetric models, we extended our previously developed coordinate system to incorporate transmurality, atrial regions and fibres (rule-based or data driven diffusion tensor magnetic resonance imaging (MRI)). We created a cohort of 1000 biatrial bilayer and volumetric models derived from computed tomography (CT) data, as well as models from MRI, and electroanatomical mapping. Fibrillatory dynamics diverged between bilayer and volumetric simulations across the CT cohort (correlation coefficient for phase singularity maps: left atrial (LA) 0.27 ± 0.19, right atrial (RA) 0.41 ± 0.14). Adding fibrotic remodelling stabilized re-entries and reduced the impact of model type (LA: 0.52 ± 0.20, RA: 0.36 ± 0.18). The choice of fibre field has a small effect on paced activation data (less than 12 ms), but a larger effect on fibrillatory dynamics. Overall, we developed an open-source user-friendly pipeline for generating atrial models from imaging or electroanatomical mapping data enabling <i>in silico</i> clinical trials at scale (https://github.com/pcmlab/atrialmtk).</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"13 6","pages":"20230038"},"PeriodicalIF":4.4,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722212/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138794905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of pulmonary arterial hypertension-induced atrial fibrillation: insights from multi-scale models of the human atria. 肺动脉高压诱发心房颤动的机制:人体心房多尺度模型的启示。
IF 3.6 3区 生物学
Interface Focus Pub Date : 2023-12-15 eCollection Date: 2023-12-06 DOI: 10.1098/rsfs.2023.0039
Jieyun Bai, Andy Lo, James Kennelly, Roshan Sharma, Na Zhao, Mark L Trew, Jichao Zhao
{"title":"Mechanisms of pulmonary arterial hypertension-induced atrial fibrillation: insights from multi-scale models of the human atria.","authors":"Jieyun Bai, Andy Lo, James Kennelly, Roshan Sharma, Na Zhao, Mark L Trew, Jichao Zhao","doi":"10.1098/rsfs.2023.0039","DOIUrl":"10.1098/rsfs.2023.0039","url":null,"abstract":"<p><p>This study aimed to use multi-scale atrial models to investigate pulmonary arterial hypertension (PAH)-induced atrial fibrillation mechanisms. The results of our computer simulations revealed that, at the single-cell level, PAH-induced remodelling led to a prolonged action potential (AP) (ΔAPD: 49.6 ms in the right atria (RA) versus 41.6 ms in the left atria (LA)) and an increased calcium transient (CaT) (ΔCaT: 7.5 × 10<sup>-2</sup> µM in the RA versus 0.9 × 10<sup>-3</sup> µM in the LA). Moreover, heterogeneous remodelling increased susceptibility to afterdepolarizations, particularly in the RA. At the tissue level, we observed a significant reduction in conduction velocity (CV) (ΔCV: -0.5 m s<sup>-1</sup> in the RA versus -0.05 m s<sup>-1</sup> in the LA), leading to a shortened wavelength in the RA, but not in the LA. Additionally, afterdepolarizations in the RA contributed to enhanced repolarization dispersion and facilitated unidirectional conduction block. Furthermore, the increased fibrosis in the RA amplified the likelihood of excitation wave breakdown and the occurrence of sustained re-entries. Our results indicated that the RA is characterized by increased susceptibility to afterdepolarizations, slow conduction, reduced wavelength and upregulated fibrosis. These findings shed light on the underlying factors that may promote atrial fibrillation in patients with PAH.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"13 6","pages":"20230039"},"PeriodicalIF":3.6,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722211/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138794992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信