Assessing the feasibility of a new approach to measure the full spectrum of cerebrospinal fluid dynamics within the human brain using MRI: insights from a simulation study.
E C van der Voort, M C E van der Plas, J J M Zwanenburg
{"title":"Assessing the feasibility of a new approach to measure the full spectrum of cerebrospinal fluid dynamics within the human brain using MRI: insights from a simulation study.","authors":"E C van der Voort, M C E van der Plas, J J M Zwanenburg","doi":"10.1098/rsfs.2024.0048","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebrospinal fluid (CSF) dynamics are essential in the waste clearance of the brain. Disruptions in CSF flow are linked to various neurological conditions, highlighting the need for accurate measurement of its dynamics. Current methods typically capture high-speed CSF movements or focus on a single-frequency component, presenting challenges for comprehensive analysis. This study proposes a novel approach using displacement encoding with stimulated echoes (DENSE) MRI to assess the full spectrum of CSF motion within the brain. Through simulations, we evaluated the feasibility of disentangling distinct CSF motion components, including heartbeat- and respiration-driven flows, as well as a net velocity component due to continuous CSF turnover, and tested the performance of our method under incorrect assumptions about the underlying model of CSF motion. Results demonstrate that DENSE MRI can accurately separate these components, and reliably estimate a net velocity, even when periodic physiological motions vary over time. The method proved to be robust for including low-frequency components, incorrect assumptions on the nature of the net velocity component and missing CSF components in the model. This approach offers a comprehensive measurement technique for quantifying CSF dynamics, advancing our understanding of the relative role of various drivers of CSF dynamics in brain clearance.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"15 1","pages":"20240048"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969190/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2024.0048","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cerebrospinal fluid (CSF) dynamics are essential in the waste clearance of the brain. Disruptions in CSF flow are linked to various neurological conditions, highlighting the need for accurate measurement of its dynamics. Current methods typically capture high-speed CSF movements or focus on a single-frequency component, presenting challenges for comprehensive analysis. This study proposes a novel approach using displacement encoding with stimulated echoes (DENSE) MRI to assess the full spectrum of CSF motion within the brain. Through simulations, we evaluated the feasibility of disentangling distinct CSF motion components, including heartbeat- and respiration-driven flows, as well as a net velocity component due to continuous CSF turnover, and tested the performance of our method under incorrect assumptions about the underlying model of CSF motion. Results demonstrate that DENSE MRI can accurately separate these components, and reliably estimate a net velocity, even when periodic physiological motions vary over time. The method proved to be robust for including low-frequency components, incorrect assumptions on the nature of the net velocity component and missing CSF components in the model. This approach offers a comprehensive measurement technique for quantifying CSF dynamics, advancing our understanding of the relative role of various drivers of CSF dynamics in brain clearance.
期刊介绍:
Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.