Matthew McGarry, Damian Sowinski, Likun Tan, John Weaver, Jacobus J M Zwanenburg, Keith Paulsen
{"title":"<i>In vivo</i> magnetic resonance imaging of the interstitial pressure gradients (pgMRI) using a pulsatile poroelastic computational model.","authors":"Matthew McGarry, Damian Sowinski, Likun Tan, John Weaver, Jacobus J M Zwanenburg, Keith Paulsen","doi":"10.1098/rsfs.2024.0044","DOIUrl":null,"url":null,"abstract":"<p><p>Fluid movement in the interstitial space of the brain affects the clearance of waste products, which is an important factor in the pathophysiology of dementia. Estimating interstitial fluid (ISF) flow is critical to understanding these processes; yet, it has proven difficult to measure non-invasively. The pulsatile component of ISF flow may be particularly important for clearance, e.g. by facilitating fluid mixing. Directly measuring ISF flows is challenging due to the slow velocities and small volume fractions involved; however, pulsatile flows present a unique opportunity as their driving forces can be estimated from observations of pulsatile tissue motion. In this work, we present pressure gradient magnetic resonance imaging (pgMRI), which assimilates retrospectively gated pulsatile tissue deformations measured with a displacement encoding with stimulated echoes MRI sequence into a patient-specific poroelastic computational model by estimating the distribution of fluid sources. The new method is demonstrated to recover a spherical fluid source accurately from synthetic data with simulated noise of up to 20%, and to produce not previously reported <i>in vivo</i> brain fluid source images along with companion images of the three-dimensional stresses and pressure gradients which drive ISF movement. Repeated exams of four healthy volunteers demonstrated variability below 10% for pgMRI parameters in most cases.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"15 1","pages":"20240044"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969188/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2024.0044","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fluid movement in the interstitial space of the brain affects the clearance of waste products, which is an important factor in the pathophysiology of dementia. Estimating interstitial fluid (ISF) flow is critical to understanding these processes; yet, it has proven difficult to measure non-invasively. The pulsatile component of ISF flow may be particularly important for clearance, e.g. by facilitating fluid mixing. Directly measuring ISF flows is challenging due to the slow velocities and small volume fractions involved; however, pulsatile flows present a unique opportunity as their driving forces can be estimated from observations of pulsatile tissue motion. In this work, we present pressure gradient magnetic resonance imaging (pgMRI), which assimilates retrospectively gated pulsatile tissue deformations measured with a displacement encoding with stimulated echoes MRI sequence into a patient-specific poroelastic computational model by estimating the distribution of fluid sources. The new method is demonstrated to recover a spherical fluid source accurately from synthetic data with simulated noise of up to 20%, and to produce not previously reported in vivo brain fluid source images along with companion images of the three-dimensional stresses and pressure gradients which drive ISF movement. Repeated exams of four healthy volunteers demonstrated variability below 10% for pgMRI parameters in most cases.
期刊介绍:
Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.