Exercise modulates brain pulsatility: insights from q-aMRI and MRI-based flow methods.

IF 3.6 3区 生物学 Q1 BIOLOGY
Jethro Stephan Wright, Edward Clarkson, Haribalan Kumar, Itamar Terem, Alireza Sharifzadeh-Kermani, Josh McGeown, Ed Maunder, Paul Condron, Gonzalo Maso Talou, David Dubowitz, Miriam Scadeng, Sarah-Jane Guild, Vickie Shim, Samantha J Holdsworth, Eryn Kwon
{"title":"Exercise modulates brain pulsatility: insights from q-aMRI and MRI-based flow methods.","authors":"Jethro Stephan Wright, Edward Clarkson, Haribalan Kumar, Itamar Terem, Alireza Sharifzadeh-Kermani, Josh McGeown, Ed Maunder, Paul Condron, Gonzalo Maso Talou, David Dubowitz, Miriam Scadeng, Sarah-Jane Guild, Vickie Shim, Samantha J Holdsworth, Eryn Kwon","doi":"10.1098/rsfs.2024.0043","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates intracranial dynamics following the Monro-Kellie doctrine, depicting how brain pulsatility, cerebrospinal fluid (CSF) flow and cerebral blood flow (CBF) interact under resting and exercise conditions. Using quantitative amplified magnetic resonance imaging (q-aMRI) alongside traditional MRI flow metrics, we measured and analysed blood flow, CSF dynamics and brain displacement in a cohort of healthy adults both at rest and during low-intensity handgrip exercise. Exercise was found to reduce pulsatility in CBF while increasing CSF flow and eliminating CSF regurgitation, highlighting a shift towards more sustained forward flow patterns (from cranial to spinal compartments). Displacement analysis using q-aMRI revealed a consistent trend of reduced whole brain motion during exercise, though as the sample of data that met quality control was low (<i>n</i> = 5), this was not a significant result. There was an observable decrease in the motion of third and fourth ventricles, linking ventricular displacement to CSF flow alterations. These findings suggest that exercise may not only affect the rate and directionality of CSF flow but also modulate brain tissue motion, supporting cerebral homeostasis. This study offers insights into how the brain adapts dynamically under varying conditions, with implications for understanding intracranial pressure regulation in humans and diagnostic contexts.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"15 1","pages":"20240043"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2024.0043","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates intracranial dynamics following the Monro-Kellie doctrine, depicting how brain pulsatility, cerebrospinal fluid (CSF) flow and cerebral blood flow (CBF) interact under resting and exercise conditions. Using quantitative amplified magnetic resonance imaging (q-aMRI) alongside traditional MRI flow metrics, we measured and analysed blood flow, CSF dynamics and brain displacement in a cohort of healthy adults both at rest and during low-intensity handgrip exercise. Exercise was found to reduce pulsatility in CBF while increasing CSF flow and eliminating CSF regurgitation, highlighting a shift towards more sustained forward flow patterns (from cranial to spinal compartments). Displacement analysis using q-aMRI revealed a consistent trend of reduced whole brain motion during exercise, though as the sample of data that met quality control was low (n = 5), this was not a significant result. There was an observable decrease in the motion of third and fourth ventricles, linking ventricular displacement to CSF flow alterations. These findings suggest that exercise may not only affect the rate and directionality of CSF flow but also modulate brain tissue motion, supporting cerebral homeostasis. This study offers insights into how the brain adapts dynamically under varying conditions, with implications for understanding intracranial pressure regulation in humans and diagnostic contexts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Interface Focus
Interface Focus BIOLOGY-
CiteScore
9.20
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信