Exercise modulates brain pulsatility: insights from q-aMRI and MRI-based flow methods.

IF 3.6 3区 生物学 Q1 BIOLOGY
Jethro Stephan Wright, Edward Clarkson, Haribalan Kumar, Itamar Terem, Alireza Sharifzadeh-Kermani, Josh McGeown, Ed Maunder, Paul Condron, Gonzalo Maso Talou, David Dubowitz, Miriam Scadeng, Sarah-Jane Guild, Vickie Shim, Samantha J Holdsworth, Eryn Kwon
{"title":"Exercise modulates brain pulsatility: insights from q-aMRI and MRI-based flow methods.","authors":"Jethro Stephan Wright, Edward Clarkson, Haribalan Kumar, Itamar Terem, Alireza Sharifzadeh-Kermani, Josh McGeown, Ed Maunder, Paul Condron, Gonzalo Maso Talou, David Dubowitz, Miriam Scadeng, Sarah-Jane Guild, Vickie Shim, Samantha J Holdsworth, Eryn Kwon","doi":"10.1098/rsfs.2024.0043","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates intracranial dynamics following the Monro-Kellie doctrine, depicting how brain pulsatility, cerebrospinal fluid (CSF) flow and cerebral blood flow (CBF) interact under resting and exercise conditions. Using quantitative amplified magnetic resonance imaging (q-aMRI) alongside traditional MRI flow metrics, we measured and analysed blood flow, CSF dynamics and brain displacement in a cohort of healthy adults both at rest and during low-intensity handgrip exercise. Exercise was found to reduce pulsatility in CBF while increasing CSF flow and eliminating CSF regurgitation, highlighting a shift towards more sustained forward flow patterns (from cranial to spinal compartments). Displacement analysis using q-aMRI revealed a consistent trend of reduced whole brain motion during exercise, though as the sample of data that met quality control was low (<i>n</i> = 5), this was not a significant result. There was an observable decrease in the motion of third and fourth ventricles, linking ventricular displacement to CSF flow alterations. These findings suggest that exercise may not only affect the rate and directionality of CSF flow but also modulate brain tissue motion, supporting cerebral homeostasis. This study offers insights into how the brain adapts dynamically under varying conditions, with implications for understanding intracranial pressure regulation in humans and diagnostic contexts.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"15 1","pages":"20240043"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2024.0043","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates intracranial dynamics following the Monro-Kellie doctrine, depicting how brain pulsatility, cerebrospinal fluid (CSF) flow and cerebral blood flow (CBF) interact under resting and exercise conditions. Using quantitative amplified magnetic resonance imaging (q-aMRI) alongside traditional MRI flow metrics, we measured and analysed blood flow, CSF dynamics and brain displacement in a cohort of healthy adults both at rest and during low-intensity handgrip exercise. Exercise was found to reduce pulsatility in CBF while increasing CSF flow and eliminating CSF regurgitation, highlighting a shift towards more sustained forward flow patterns (from cranial to spinal compartments). Displacement analysis using q-aMRI revealed a consistent trend of reduced whole brain motion during exercise, though as the sample of data that met quality control was low (n = 5), this was not a significant result. There was an observable decrease in the motion of third and fourth ventricles, linking ventricular displacement to CSF flow alterations. These findings suggest that exercise may not only affect the rate and directionality of CSF flow but also modulate brain tissue motion, supporting cerebral homeostasis. This study offers insights into how the brain adapts dynamically under varying conditions, with implications for understanding intracranial pressure regulation in humans and diagnostic contexts.

运动调节脑搏动:来自q-aMRI和基于mri的血流方法的见解。
本研究根据Monro-Kellie学说研究颅内动力学,描述脑脉动、脑脊液(CSF)流和脑血流量(CBF)在静息和运动条件下如何相互作用。利用定量放大磁共振成像(q-aMRI)和传统的MRI流量指标,我们测量并分析了一组健康成年人在休息和低强度握力运动时的血流量、脑脊液动力学和脑位移。研究发现,运动可以降低CBF的搏动性,同时增加CSF流量并消除CSF返流,突出了向更持续的前流模式(从颅室到脊髓室)的转变。使用q-aMRI的位移分析显示,运动期间全脑运动减少的趋势是一致的,尽管满足质量控制的数据样本很少(n = 5),这不是一个显著的结果。第三和第四脑室的运动明显减少,将脑室位移与脑脊液流量改变联系起来。这些发现表明,运动不仅可以影响脑脊液流动的速率和方向,还可以调节脑组织运动,支持大脑稳态。这项研究提供了关于大脑如何在不同条件下动态适应的见解,对理解人类和诊断背景下的颅内压调节具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interface Focus
Interface Focus BIOLOGY-
CiteScore
9.20
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信