Jethro Stephan Wright, Edward Clarkson, Haribalan Kumar, Itamar Terem, Alireza Sharifzadeh-Kermani, Josh McGeown, Ed Maunder, Paul Condron, Gonzalo Maso Talou, David Dubowitz, Miriam Scadeng, Sarah-Jane Guild, Vickie Shim, Samantha J Holdsworth, Eryn Kwon
{"title":"Exercise modulates brain pulsatility: insights from q-aMRI and MRI-based flow methods.","authors":"Jethro Stephan Wright, Edward Clarkson, Haribalan Kumar, Itamar Terem, Alireza Sharifzadeh-Kermani, Josh McGeown, Ed Maunder, Paul Condron, Gonzalo Maso Talou, David Dubowitz, Miriam Scadeng, Sarah-Jane Guild, Vickie Shim, Samantha J Holdsworth, Eryn Kwon","doi":"10.1098/rsfs.2024.0043","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates intracranial dynamics following the Monro-Kellie doctrine, depicting how brain pulsatility, cerebrospinal fluid (CSF) flow and cerebral blood flow (CBF) interact under resting and exercise conditions. Using quantitative amplified magnetic resonance imaging (q-aMRI) alongside traditional MRI flow metrics, we measured and analysed blood flow, CSF dynamics and brain displacement in a cohort of healthy adults both at rest and during low-intensity handgrip exercise. Exercise was found to reduce pulsatility in CBF while increasing CSF flow and eliminating CSF regurgitation, highlighting a shift towards more sustained forward flow patterns (from cranial to spinal compartments). Displacement analysis using q-aMRI revealed a consistent trend of reduced whole brain motion during exercise, though as the sample of data that met quality control was low (<i>n</i> = 5), this was not a significant result. There was an observable decrease in the motion of third and fourth ventricles, linking ventricular displacement to CSF flow alterations. These findings suggest that exercise may not only affect the rate and directionality of CSF flow but also modulate brain tissue motion, supporting cerebral homeostasis. This study offers insights into how the brain adapts dynamically under varying conditions, with implications for understanding intracranial pressure regulation in humans and diagnostic contexts.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"15 1","pages":"20240043"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2024.0043","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates intracranial dynamics following the Monro-Kellie doctrine, depicting how brain pulsatility, cerebrospinal fluid (CSF) flow and cerebral blood flow (CBF) interact under resting and exercise conditions. Using quantitative amplified magnetic resonance imaging (q-aMRI) alongside traditional MRI flow metrics, we measured and analysed blood flow, CSF dynamics and brain displacement in a cohort of healthy adults both at rest and during low-intensity handgrip exercise. Exercise was found to reduce pulsatility in CBF while increasing CSF flow and eliminating CSF regurgitation, highlighting a shift towards more sustained forward flow patterns (from cranial to spinal compartments). Displacement analysis using q-aMRI revealed a consistent trend of reduced whole brain motion during exercise, though as the sample of data that met quality control was low (n = 5), this was not a significant result. There was an observable decrease in the motion of third and fourth ventricles, linking ventricular displacement to CSF flow alterations. These findings suggest that exercise may not only affect the rate and directionality of CSF flow but also modulate brain tissue motion, supporting cerebral homeostasis. This study offers insights into how the brain adapts dynamically under varying conditions, with implications for understanding intracranial pressure regulation in humans and diagnostic contexts.
期刊介绍:
Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.