Hamza Mhamdi Alaoui, Chaofa Zhao, Wenbo Niu, Pierre‐Yves Hicher
{"title":"Modeling the Swelling Behavior of Clayey Geomaterials Across Scales: Advances and Challenges","authors":"Hamza Mhamdi Alaoui, Chaofa Zhao, Wenbo Niu, Pierre‐Yves Hicher","doi":"10.1002/nag.3881","DOIUrl":"https://doi.org/10.1002/nag.3881","url":null,"abstract":"Most soils and rocks contain varying fractions of clay minerals within their solid matrix. These geomaterials can exhibit a significant swelling potential toward chemo‐thermo‐hydromechanical loadings. Several multiscale modeling techniques have been developed to ascertain their swelling behavior across various scales, with molecular dynamics (MD), micromechanics‐based approaches, and double‐porosity models being the most common. MD simulation is a computational technique that applies Newton's second law of motion to depict the movement of particles within a granular system. Micromechanics‐based approaches upscale the poro‐elasticity law from the clay layer level to the sample scale through homogenization. Dual‐porosity models are generally based on elasto‐plasticity, incorporating different hydro‐mechanical laws at two distinct scales. These models have been extensively used, particularly for clayey soils and bentonites, though their application to clayey rocks has not been reported in the literature. Although their significant contribution to the understanding of clay swelling behavior, these techniques have been insufficiently reviewed, compared, and discussed mutually in the literature. This paper aims to provide a cross‐look on these multiscale approaches by presenting the theoretical background of existing formulations, highlighting breakthrough results, discussing major differences and current challenges, and proposing future perspectives.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"87 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling Brittle Failure in Rock Slopes Using Semi‐Lagrangian Nonlocal General Particle Dynamics","authors":"Peng Yin, Xiao‐Ping Zhou, Jinhu Pan","doi":"10.1002/nag.3882","DOIUrl":"https://doi.org/10.1002/nag.3882","url":null,"abstract":"The nonlocal general particle dynamics (NGPD) has been successfully developed to model crack propagation and large deformation problems. In this paper, the semi‐Lagrangian nonlocal general particle dynamics (SL‐NGPD) is proposed to solve brittle failure in rock slopes. In SL‐NGPD, the interaction between particles due to deformation is calculated in the initial configuration, while the friction contact interaction from discontinuities is calculated in the current configuration. The Van der Waals force model is utilized for friction contact. The bond‐level energy‐based failure criterion is developed to predict tensile/compressive‐shear mix‐mode cracks. The artificial viscosity and damage correction are used to enhance the numerical stability and accuracy when modeling brittle failure. The SL‐NGPD paradigm is numerically implemented through adaptive dynamic relaxation and predictor–corrector schemes for stable numerical solutions. The stability and accuracy of SL‐NGPD are verified by simulating compression tests. Thereafter, the crack coalescence patterns of double‐flaw specimens are investigated to understand the triggering failure mechanism of jointed rock slopes. Finally, the progressive failure process of the rock slope with step‐path joints is simulated to demonstrate its validity and robustness in modeling brittle failure in rockslides. The numerical results illustrate that the proposed SL‐NGPD is promising and performant for analyzing brittle failure problems in geotechnical engineering.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"131 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raúl Castro, Diego Oyarzo, René Gómez, Kimie Suzuki, Miguel Cifuentes
{"title":"Coupling Geomechanical and Gravity Flow Models to Obtain More Representative Flow Simulations and Air‐Gap Risk Identification in Caving Mining","authors":"Raúl Castro, Diego Oyarzo, René Gómez, Kimie Suzuki, Miguel Cifuentes","doi":"10.1002/nag.3880","DOIUrl":"https://doi.org/10.1002/nag.3880","url":null,"abstract":"The extraction and propagation of caving are complex phenomena involving the breaking of the rock mass, the formation of a column of broken material, and the extraction from the column base. Geomechanical modeling in cave mining commonly uses approaches to model the rock mass as a continuous material, while discontinuous modeling is frequently used for the column of broken material. However, it remains complex to include all mechanisms in a single model. Therefore, to achieve a better representation of ore breakage and extraction in caving mining, this work couples FLAC<jats:sup>3D</jats:sup>, a continuous finite volume tool, with FlowSim, a discrete tool based on cellular automata, to determine the air gap volume. The methodology first defines the height of caving propagation and the cave back with a tool that models solid rock mass in a continuous manner, which are used to constrain the cellular automata tool that simulates the flow of broken material. The results show that unidirectional FLAC<jats:sup>3D</jats:sup>‐FlowSim coupling reproduces the generation of cave backs and air gaps in the propagation of caving, rendering the methodology valuable for preliminary estimation of air volumes over fragmented material and the generation of supportive data to control the caving process.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"2018 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cristina De Nardi, Sina Sayadi, Iulia Mihai, Anthony Jefferson
{"title":"Simulation of Autogenous Self‐Healing in Lime‐Based Mortars","authors":"Cristina De Nardi, Sina Sayadi, Iulia Mihai, Anthony Jefferson","doi":"10.1002/nag.3870","DOIUrl":"https://doi.org/10.1002/nag.3870","url":null,"abstract":"Throughout history, architectural heritage has been constructed using masonry, clay or stone elements, and lime‐based mortars. Over time, old buildings are subjected to different degrees of movement and degradation, leading to the formation of microcracks. Water dissolves and transports lime in mortar, but when the water evaporates, the lime is deposited and heals cracks in a process known as autogenous healing. Lime‐based mortars can regain some mechanical properties due to their healing capacity, given certain conditions. In the present work, a constitutive formulation has been developed to simulate cracking and healing in lime‐based mortars. The proposed model captures the residual displacements within cracks, associated with interacting crack surface asperities, as well as the healing effect on mechanical properties. A new approach is described which expresses these mechanisms mathematically within a micromechanical formulation. The proposed model was validated by comparing the outputs with experimental data. The results show that the new continuum micromechanical damage‐healing model could capture the damage‐healing cycle with good accuracy.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"7 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robert P. Chapuis, Coline Taveau, François Duhaime, Simon Weber, Vahid Marefat, Lu Zhang, Daniela Blessent, Najib Bouaanani, Dominique Pelletier
{"title":"Using H‐Convergence to Calculate the Numerical Errors for 1D Unsaturated Seepage Under Steady‐State Conditions","authors":"Robert P. Chapuis, Coline Taveau, François Duhaime, Simon Weber, Vahid Marefat, Lu Zhang, Daniela Blessent, Najib Bouaanani, Dominique Pelletier","doi":"10.1002/nag.3876","DOIUrl":"https://doi.org/10.1002/nag.3876","url":null,"abstract":"Unsaturated zones are important for geotechnical design, geochemical reactions, and microbial reactions. The numerical analysis of unsaturated seepage is complex because it involves highly nonlinear partial differential equations. The permeability can vary by orders of magnitude over short vertical distances. This article defines and uses H‐convergence tests to quantify numerical errors made by uniform meshes with element size (<jats:italic>ES</jats:italic>) for 1D steady‐state conditions. The quantitative H‐convergence should not be confused with a qualitative mesh sensitivity study. The difference between numerical and mathematical convergences is stated. A detailed affordable method for an H‐convergence test is presented. The true but unknown solution is defined as the asymptote of the numerical solutions for all solution components when <jats:italic>ES</jats:italic> decreases to zero. The numerical errors versus <jats:italic>ES</jats:italic> are then assessed with respect to the true solution, and using a log–log plot, which indicates whether a code is correct or incorrect. If a code is correct, its results follow the rules of mathematical convergence in a mathematical convergence domain (MCD) which is smaller than the numerical convergence domain (NCD). If a code is incorrect, it has an NCD but no MCD. Incorrect algorithms of incorrect codes need to be modified and repaired. Existing codes are shown to converge numerically within large NCDs but generate large errors, up to 500%, in the NCDs, a dangerous situation for designers.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"116 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patrick Staubach, Lukas Knittel, Torsten Wichtmann
{"title":"Complex High‐Cyclic Loading in an Accumulation Model for Sand","authors":"Patrick Staubach, Lukas Knittel, Torsten Wichtmann","doi":"10.1002/nag.3871","DOIUrl":"https://doi.org/10.1002/nag.3871","url":null,"abstract":"Experimental evidence indicates that multidimensional cyclic loading of soils causes larger accumulation of deformations than equivalent one‐dimensional loading. The response of sand to high‐cyclic loading with 10,000 cycles and up to four‐dimensional stress paths (i.e., four independent oscillating components) is examined in 120 triaxial and hollow cylinder tests in this work to extend these findings. With increasing number of oscillating stress components, the accumulation of permanent strains tends to increase. It is demonstrated that the definition of the multidimensional strain amplitude incorporated in the high‐cycle accumulation (HCA) model can account for this. The validation of the HCA model for complex cyclic loading is complemented by the simulation of model tests on monopile foundations of offshore wind turbines subjected to multidirectional cyclic loading, for which the consideration of spatially variable cyclic loading with nonconstant load amplitudes in the HCA model is discussed. For this purpose, an extension of the HCA model considering multiple strain amplitudes is presented.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"62 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytical Solutions for Axisymmetric Diffusion of Organic Pollutants in a Circular‐Shaped Cutoff Wall System","authors":"Wenhao Jiang, Shangqi Ge, Jiangshan Li","doi":"10.1002/nag.3875","DOIUrl":"https://doi.org/10.1002/nag.3875","url":null,"abstract":"Through the variable substitution and separated variable methods, this study develops a two‐dimensional (2‐D) axisymmetric diffusion analytical solution for organic pollutants in a circular‐shaped cutoff wall (CCW) system for the first time, which can more precisely and reasonably simulate the diffusion behaviors in “circular‐shaped” vertical barriers. Then, the proposed analytical solution's reasonableness is verified by comparing it with an existing analytical solution and a corresponding finite‐difference solution. Meanwhile, the comparison suggests that this solution will degrade to a 2‐D diffusion analytical solution when the pollution source radius is large enough. Furthermore, the presented analytical solution can also be simplified to a one‐dimensional axisymmetric diffusion analytical solution, or to the axisymmetric diffusion analytical solutions in a single‐layered medium. These exact analytical solutions can not only be applied to study axisymmetric diffusion behaviors under specific scenarios, but also be used to validate other complex numerical models. Last, a case study is conducted to investigate the impacts of pollution source concentration distribution, CCW horizontal thickness, and defined equivalent diffusion coefficient on the barrier performance. Overall, the proposed analytical solutions and obtained diffusion laws in this study can provide guidance for the service effect assessment and the engineering design of cutoff walls.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"23 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytical Solutions for Composite Foundations Reinforced by Partially Penetrated Stone Columns and Vertical Drains","authors":"Chuanxun Li, Xiangzong Lu","doi":"10.1002/nag.3874","DOIUrl":"https://doi.org/10.1002/nag.3874","url":null,"abstract":"When stone columns or vertical drains are applied to improve soils, it is common to face situations where the soft soil layer is too thick to be penetrated completely. Although consolidation theories for soils with partially penetrated vertical drains or stone columns are comprehensive, consolidation theories for impenetrable composite foundations containing both two types of drainage bodies have been few reported in the existing literature. Equations governing the consolidation of the reinforced zone and unreinforced zone are established, respectively. Analytical solutions for consolidation of such composite foundations are obtained under permeable top with impermeable bottom (PTIB) and permeable top with permeable bottom (PTPB), respectively. The correctness of proposed solutions is verified by comparing them with existing solutions and finite element analyses. Then, extensive calculations are performed to analyze the consolidation behaviors at different penetration rates, including the total average consolidation degree defined by strain or stress and the distribution of the average excess pore water pressure (EPWP) along the depth. The results show that the total average consolidation rate increases as the penetration rate increases; for some composite foundations with a low penetration rate, the consolidation of the unreinforced zone cannot be ignored. Finally, according to the geological parameters provided by an actual project, the obtained solution is used to calculate the settlement, and the results obtained by the proposed solution are in reasonable agreement with the measured data.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"44 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fractional Viscoelastic Analysis of Transversely Isotropic Surrounding Rock Along Shallow Buried Elliptical Tunnel","authors":"Zhi Yong Ai, Yi Xuan Pan, Zi Kun Ye, Da Shan Wang","doi":"10.1002/nag.3877","DOIUrl":"https://doi.org/10.1002/nag.3877","url":null,"abstract":"This study introduces the fractional order Merchant model to analytically solve the stress and displacement fields of the transversely isotropic viscoelastic surrounding rock along shallow elliptical tunnels. First, the stress and displacement solutions of fractional order viscoelastic and transversely isotropic half planes under arbitrary loads are obtained using the Laplace transform and the elastic‐viscoelastic correspondence principle. Second, based on the above half plane solution and the solution of the deep buried elliptical tunnel problem, the Schwarz alternating method is introduced to obtain the analytical solution of the shallow buried elliptical tunnel. A MATLAB program is developed, and the accuracy of the theory and program in this study is verified by comparing it with the results of ABAQUS. Finally, the effects of transversely isotropic parameters, tunnel burial depth, and viscoelastic parameters on the stress and displacement of tunnel surrounding rock are analyzed.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"234 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan‐Ning Wang, Han Chen, Xin‐Hao Min, Lin‐Shuang Zhao
{"title":"Identification of Disc Cutter Wear via Operation Parameters Combined With Vibration Data: A Case Study","authors":"Yan‐Ning Wang, Han Chen, Xin‐Hao Min, Lin‐Shuang Zhao","doi":"10.1002/nag.3872","DOIUrl":"https://doi.org/10.1002/nag.3872","url":null,"abstract":"This paper proposed an approach to estimate disc cutter wear utilizing a combination of multiple operational parameters and vibration data collected during shield tunneling operations. The incorporation of vibration signals, notably those originating from acceleration sensors mounted on the back plate of the soil chamber, has markedly enhanced the accuracy of the model. Time‐frequency domain features were extracted through analysis methods such as Fast Fourier Transform (FFT), Short‐Time Fourier Transform (STFT), and Continuous Wavelet Transform (CWT). A predictive model utilizing vibration and shield operation parameters was developed using the XGBoost algorithm, and a deep GoogLeNet Convolutional Neural Network (CNN) was trained on time‐frequency graphs from the CWT. In addition, this study also investigated the impact of signal duration on wavelet image information and model accuracy. In the Huang‐Shang Intercity Railway Project, the approach effectively assessed disc cutter wear during tunneling operations and dynamically optimized the operational parameters of the shield tunnel machine through predictive analysis.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"36 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}