Edoardo Pezzulli, Patrick Zulian, Alena Kopaničáková, Rolf Krause, Thomas Driesner
{"title":"The Limitations of a Standard Phase-Field Model in Reproducing Jointing in Sedimentary Rock Layers","authors":"Edoardo Pezzulli, Patrick Zulian, Alena Kopaničáková, Rolf Krause, Thomas Driesner","doi":"10.1002/nag.4006","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Geological applications of phase-field methods for fracture are notably scarce. This work conducts a numerical examination of the applicability of standard phase-field models in reproducing jointing within sedimentary layers. We explore how the volumetric-deviatoric split alongside the AT1 and AT2 phase-field formulations has several advantages in simulating jointing, but also has intrinsic limitations that prevent a reliable quantitative analysis of rock fracture. The formulations qualitatively reproduce the process of joint saturation, along with the negative correlation between joint spacing and the height of the sedimentary layer. However, in quantitative comparison to alternative numerical methods and outcrop observations, the phase-field method overestimates joint spacings by a factor of 2 and induces unrealistic compressive fractures in the AT1 model, alongside premature shearing at layer interfaces for the AT2 model. The causes are identified to be intrinsic to the phase-field lengthscale and the unsuitable strength envelope arising from the Volumetric-Deviatoric split. Finally, our analysis elucidates the phase-field lengthscale's distortion of the stress field around dilating fractures, causing the sedimentary layer to reach joint saturation prematurely, thereby stopping the nucleation of new fractures and leading to larger joint spacings than in natural examples. Decreasing the lengthscale results in gradual improvement but becomes prohibitively computationally expensive for very small lengthscales such that the limit of ‘natural’ behaviour was not reached in this study. Overall, our results motivate the development of constitutive phase-field models that are more suitable for geological applications and their benchmarking against geological observations.</p></div>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"49 11","pages":"2709-2727"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.4006","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Geological applications of phase-field methods for fracture are notably scarce. This work conducts a numerical examination of the applicability of standard phase-field models in reproducing jointing within sedimentary layers. We explore how the volumetric-deviatoric split alongside the AT1 and AT2 phase-field formulations has several advantages in simulating jointing, but also has intrinsic limitations that prevent a reliable quantitative analysis of rock fracture. The formulations qualitatively reproduce the process of joint saturation, along with the negative correlation between joint spacing and the height of the sedimentary layer. However, in quantitative comparison to alternative numerical methods and outcrop observations, the phase-field method overestimates joint spacings by a factor of 2 and induces unrealistic compressive fractures in the AT1 model, alongside premature shearing at layer interfaces for the AT2 model. The causes are identified to be intrinsic to the phase-field lengthscale and the unsuitable strength envelope arising from the Volumetric-Deviatoric split. Finally, our analysis elucidates the phase-field lengthscale's distortion of the stress field around dilating fractures, causing the sedimentary layer to reach joint saturation prematurely, thereby stopping the nucleation of new fractures and leading to larger joint spacings than in natural examples. Decreasing the lengthscale results in gradual improvement but becomes prohibitively computationally expensive for very small lengthscales such that the limit of ‘natural’ behaviour was not reached in this study. Overall, our results motivate the development of constitutive phase-field models that are more suitable for geological applications and their benchmarking against geological observations.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.