{"title":"Lipid storage may help invasive mussels to survive in limited food conditions.","authors":"Csilla Balogh, Jarosław Kobak, Zoltán Serfőző","doi":"10.1111/1749-4877.12888","DOIUrl":"https://doi.org/10.1111/1749-4877.12888","url":null,"abstract":"<p><p>The flow direction forms a west-east nutrient gradient in Lake Balaton and separates two basins with different food conditions indicated by the annual mean of water chlorophyll-a concentration. Trends of protein and carbohydrate contents of the invasive quagga mussel decline along the longitudinal coordinates, whereas lipids increase in mussels living between the two basins under moderate food conditions. Lipid accumulation might rescue the mussels when carbohydrate stores deplete.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Large-scale fossil records analysis reveals prehistoric extinction mechanisms of woolly rhinoceros (Coelodonta antiquitatis)","authors":"Xiaoling LIANG, Weimin KUANG","doi":"10.1111/1749-4877.12891","DOIUrl":"10.1111/1749-4877.12891","url":null,"abstract":"<p>Climate oscillations and prehistoric human activity during the Middle-Late Pleistocene profoundly affected the population fluctuations and extinctions of megafauna, especially the extinct woolly rhinoceros. Fordham <i>et al.</i> (2024) recently proposed new solutions based on fossil records, paleoclimates, and prehistoric human activities data to reconstruct an explicit process-driven model, resulting in high-resolution population dynamics of the woolly rhinoceros. This study revealed the mechanisms of the woolly rhinoceros extinction: climate-driven habitat fragmentation combined with low but persistent levels of human hunting weakened metapopulation processes, leading to their extinction.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":"19 6","pages":"1233-1235"},"PeriodicalIF":3.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Channongxouang Taengon, Ying Feng, Yuanye Zhang, Sasith Tharanga Aluthwattha, Jin Chen, Gang Wang
{"title":"Cospeciation is not the dominant driver of plant-pollinator codiversification in specialized pollination systems.","authors":"Channongxouang Taengon, Ying Feng, Yuanye Zhang, Sasith Tharanga Aluthwattha, Jin Chen, Gang Wang","doi":"10.1111/1749-4877.12886","DOIUrl":"https://doi.org/10.1111/1749-4877.12886","url":null,"abstract":"<p><p>This study systematically rejects the long-standing notion of cospeciation as the dominant driver of codiversification between flowering plants and their specialist pollinators. Through cophylogenetic analysis of six classical specialized pollination systems, the research finds that cospeciation events are consistently outnumbered by non-cospeciation events, such as host-switch, duplication, and association losses. The findings support a more dynamic and diffuse codiversification paradigm, highlighting the importance of considering a broader range of evolutionary events in understanding plant-pollinator codiversification. This new understanding is robust across diverse pollination systems and has significant implications for conservation strategies in the face of environmental change.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanting Qiao, Ning Li, Ying Song, Xiaohui Liu, Dawei Wang
{"title":"Short photoperiod inhibited gonadal growth and elevated hypothalamic Dio3 expression unrelated to promoter DNA methylation in young Brandt's voles.","authors":"Yanting Qiao, Ning Li, Ying Song, Xiaohui Liu, Dawei Wang","doi":"10.1111/1749-4877.12884","DOIUrl":"https://doi.org/10.1111/1749-4877.12884","url":null,"abstract":"<p><p>Photoperiod, the length of daylight, has a significant impact on the physiological characteristics of seasonal breeding animals, including their somatic and gonadal development. In rodents, expression of deiodinase type II (Dio2) and III (Dio3) in the hypothalamus is crucial for responding to photoperiodic signals. However, research on the photoperiodism of hypothalamic gene expression and the corresponding regulatory mechanism in Brandt's voles living in the Mongolian steppes is limited. In this study, we gradually changed day length patterns to simulate spring (increasing long photoperiod, ILP) and autumn (decreasing short photoperiod, DSP). We compared the somatic and gonadal development of voles born under ILP and DSP and the expression patterns of five reproduction-related genes in the hypothalamus of young voles. The results showed that DSP significantly inhibited somatic and gonadal development in both female and male offspring. Compared with ILP, Dio3 expression was significantly upregulated in the hypothalamus under DSP conditions and remained elevated until postnatal week 8 in both males and females. However, there was no significant difference in the methylation levels of the proximal promoter region of Dio3 between ILP and DSP, suggesting that methylation in the proximal promoter region may not be involved in regulating the expression of Dio3. These findings suggest that hypothalamic expression of Dio3 plays a key role in the photoperiodic regulation of gonadal activity in Brandt's voles. However, it appears that CpGs methylation in the promoter region is not the main mechanism regulating Dio3 expression.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinling Xie, Baolin Li, Tangjian Zhou, Xiaojie Wang
{"title":"The water content, apoptosis, and proliferation of the brain in marine medaka affected by seawater acidification.","authors":"Jinling Xie, Baolin Li, Tangjian Zhou, Xiaojie Wang","doi":"10.1111/1749-4877.12872","DOIUrl":"https://doi.org/10.1111/1749-4877.12872","url":null,"abstract":"<p><p>A possible explanation for ocean acidification-induced changes in fish behavior is a systemic effect on the nervous system. Three biological barriers at the blood-brain interface effectively separate the brain from the body fluids. It is not known whether fish brain regions in contact with these barriers are affected by acidification. Here, we studied structural changes in medaka (Oryzias melastigma) brain regions contacting cerebrospinal fluid (CSF) after short-term (7 days) CO<sub>2</sub> exposure. The brain water content decreased significantly and the superficial structure of the pia mater was changed, but there was no obvious damage to the internal structures of the brain after seawater acidification. Seawater acidification also led to an increase in apoptosis and a decrease in the number of proliferative cells in brain areas contacting CSF. These results indicate that the structure of CSF-contacting brain regions in medaka was affected by seawater acidification, and the brain responded to seawater acidification stress by increasing apoptosis and reducing proliferation.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna Zimin, Sean V Zimin, L Lee Grismer, Aaron M Bauer, David G Chapple, Jacob Dembitzer, Uri Roll, Shai Meiri
{"title":"Microhabitat and adhesive toepads shape gecko limb morphology.","authors":"Anna Zimin, Sean V Zimin, L Lee Grismer, Aaron M Bauer, David G Chapple, Jacob Dembitzer, Uri Roll, Shai Meiri","doi":"10.1111/1749-4877.12880","DOIUrl":"https://doi.org/10.1111/1749-4877.12880","url":null,"abstract":"<p><p>Different substrates pose varied biomechanical challenges that select specific morphologies, such as long limbs for faster running and short limbs for balanced posture while climbing narrow substrates. We tested how gecko locomotion is affected by the microhabitat they occupy and by a key adaptation-adhesive toepads-through analyzing how those are related to limb morphology. We collected microhabitat and toepads data for over 90% of limbed gecko species, and limb measurements for 403 species from 83 of the 121 limbed gecko genera, which we then used in phylogenetic comparative analyses. Our data highlight the association of adhesive toepads with arboreality, but a phylogenetic analysis shows that this relationship is not significant, suggesting that these traits are phylogenetically constrained. Comparative analyses reveal that pad-bearing species possess shorter hindlimbs and feet, more even limb lengths, and lower crus: thigh ratios, than padless geckos, across microhabitats. Saxicolous geckos have the longest limbs and limb segments. This is probably influenced by selection for long strides, increased takeoff velocity, and static stability on inclined surfaces. Terrestrial geckos have more even hind- and forelimbs than arboreal geckos, unlike patterns found in other lizards. Our findings underline the difficulty to infer on microhabitat-morphology relationships from one taxon to another, given their differing ecologies and evolutionary pathways. We emphasize the importance of key innovation traits, such as adhesive toepads, in shaping limb morphology in geckos and, accordingly, their locomotion within their immediate environment.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The changes in zoological publication rates and focal subdisciplines between 1960 and 2022.","authors":"Tianbao Luo, Liyu Li, Qian Wang, Wentong Liu, Jinyu Guo, Yimei Yan, Newman Chris, Youbing Zhou, Jin Zhao","doi":"10.1111/1749-4877.12883","DOIUrl":"https://doi.org/10.1111/1749-4877.12883","url":null,"abstract":"<p><p>Since ancient times, zoology, as the branch of biology dealing with animals, has been a cornerstone of natural science and has developed substantially over the last century. We conducted a bibliometric analysis using structural topic modeling (STM) to determine changes in the representation of principal zoological subdisciplines in the literature between 1960 and 2022. We collated a corpus of 217 414 articles from 88 top-ranked zoology journals and identified three main fields: (i) ecology, (ii) evolution, and (iii) applied research. Within these, we identified 10 major subdisciplines. The number of studies published per year grew from 118 in 1960 to 6635 in 2022. Macroscale-related subdisciplines increased while classical and traditional subdisciplines decreased. Mammals (34.4%) and insects (18.1%) were the dominant taxa covered, followed by birds (15.2%) and fish (8.0%). Research on mammals, insects, and fish involved a broad range of subdisciplines, whereas studies of birds focused on ecological subdisciplines. Most publications were from the United States, followed by the United Kingdom, Germany, Canada, Australia, China, and Japan, with two developing countries, China and South Africa among the top 15 countries. There were different subdiscipline biases between countries, and the gross domestic product of each country correlated positively with its publication output (R<sup>2</sup> = 0.681). We discuss our findings in the context of advances in technological innovations and computing power, as well as the emergence of ecology as a formal sister discipline, driven by changing environmental pressures and societal values. We caution that valuable publications from traditional zoological fields must not be completely supplanted by more contemporary topics and increasingly sophisticated analyses.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Zhang, Kai Zhang, Fang Yang, Buddhi Dayananda, Yunpeng Cao, Zhigang Hu, Yifei Liu
{"title":"Chromosome-level genome of Scolopendra mutilans provides insights into its evolution.","authors":"Lin Zhang, Kai Zhang, Fang Yang, Buddhi Dayananda, Yunpeng Cao, Zhigang Hu, Yifei Liu","doi":"10.1111/1749-4877.12871","DOIUrl":"https://doi.org/10.1111/1749-4877.12871","url":null,"abstract":"<p><p>Report the first chromosome level genome of myriapod Scolopendra mutilans. Reveal gene expansions for importance to adapt. Annotate nine Hox cluster genes in this genome.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fecal bacterial communities of the platypus (Ornithorhynchus anatinus) reflect captivity status—Implications for conservation and management","authors":"Ashley M. DUNGAN, Jessica L. THOMAS","doi":"10.1111/1749-4877.12865","DOIUrl":"10.1111/1749-4877.12865","url":null,"abstract":"<p>The duck-billed platypus (<i>Ornithorhynchus anatinus</i>) is currently listed as near-threatened. A key part of the conservation strategy for this species is its captive maintenance; however, captive animals often have dysbiotic gut bacterial microbiomes. Here, for the first time, we characterize the gut microbiome of wild platypus via fecal samples using high-throughput sequencing of the bacterial 16S rRNA gene and identify microbial biomarkers of captivity in this species. At the phylum level, Firmicutes (50.4%) predominated among all platypuses, followed by Proteobacteria (28.7%), Fusobacteria (13.4%), and Bacteroidota (6.9%), with 21 “core” bacteria identified. Captive individuals did not differ in their microbial α-diversity compared to wild platypus but had significantly different community composition (β-diversity) and exhibited higher abundances of <i>Enterococcus</i>, which are potential pathogenic bacteria. Four taxa were identified as biomarkers of wild platypus, including <i>Rickettsiella</i>, <i>Epulopiscium</i>, <i>Clostridium</i>, and <i>Cetobacterium</i>. This contrast in gut microbiome composition between wild and captive platypus is an essential insight for guiding conservation management, as the rewilding of captive animal microbiomes is a new and emerging tool to improve captive animal health, maximize captive breeding efforts, and give reintroduced or translocated animals the best chance of survival.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":"19 6","pages":"1211-1223"},"PeriodicalIF":3.5,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1749-4877.12865","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}