Lingsen Cao, Wenbo Liao, Lianju Yuan, Yanbo Sun, Chengzhi Yan
{"title":"中国华南和西南地区无尾目动物皮肤结构对环境变化的适应性。","authors":"Lingsen Cao, Wenbo Liao, Lianju Yuan, Yanbo Sun, Chengzhi Yan","doi":"10.1111/1749-4877.12914","DOIUrl":null,"url":null,"abstract":"<p><p>Variations in skin structures can possibly reflect local adaptation to distinct environmental factors. As the primary interface with the surrounding environment, amphibian skin undergoes phenotypic innovations that play a key role in protection, water absorption, and respiration. However, the effects of environmental factors on skin structures have been examined in only a limited number of species. Here, we conducted a comparative analysis of the skin structures of 102 Chinese anuran species across varying geographical distributions and habitat types. Our results revealed that the total volume of granular glands and capillary density in the dorsal skin significantly increased with increasing latitude. We also found that the thickness of calcified layers in both dorsal and ventral skin was positively correlated with annual temperature and negatively correlated with humidity. Additionally, terrestrial species exhibited the largest dorsal granular gland, whereas arboreal species had the smallest one. Likewise, the largest dorsal mucous gland was observed in aquatic species, while the smallest was found in terrestrial species. These results highlighted the importance of understanding the relationship between skin phenotypes and environmental variables and thus providing conservation strategies based on the evolutionary adaptations in anurans. Our study can contribute to the broader knowledge of evolutionary biology in anurans by demonstrating how specific skin traits are linked to survival and fitness across various ecological contexts.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptation of skin structures to environmental variations in anurans from southern and southwestern China.\",\"authors\":\"Lingsen Cao, Wenbo Liao, Lianju Yuan, Yanbo Sun, Chengzhi Yan\",\"doi\":\"10.1111/1749-4877.12914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Variations in skin structures can possibly reflect local adaptation to distinct environmental factors. As the primary interface with the surrounding environment, amphibian skin undergoes phenotypic innovations that play a key role in protection, water absorption, and respiration. However, the effects of environmental factors on skin structures have been examined in only a limited number of species. Here, we conducted a comparative analysis of the skin structures of 102 Chinese anuran species across varying geographical distributions and habitat types. Our results revealed that the total volume of granular glands and capillary density in the dorsal skin significantly increased with increasing latitude. We also found that the thickness of calcified layers in both dorsal and ventral skin was positively correlated with annual temperature and negatively correlated with humidity. Additionally, terrestrial species exhibited the largest dorsal granular gland, whereas arboreal species had the smallest one. Likewise, the largest dorsal mucous gland was observed in aquatic species, while the smallest was found in terrestrial species. These results highlighted the importance of understanding the relationship between skin phenotypes and environmental variables and thus providing conservation strategies based on the evolutionary adaptations in anurans. Our study can contribute to the broader knowledge of evolutionary biology in anurans by demonstrating how specific skin traits are linked to survival and fitness across various ecological contexts.</p>\",\"PeriodicalId\":13654,\"journal\":{\"name\":\"Integrative zoology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/1749-4877.12914\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1749-4877.12914","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Adaptation of skin structures to environmental variations in anurans from southern and southwestern China.
Variations in skin structures can possibly reflect local adaptation to distinct environmental factors. As the primary interface with the surrounding environment, amphibian skin undergoes phenotypic innovations that play a key role in protection, water absorption, and respiration. However, the effects of environmental factors on skin structures have been examined in only a limited number of species. Here, we conducted a comparative analysis of the skin structures of 102 Chinese anuran species across varying geographical distributions and habitat types. Our results revealed that the total volume of granular glands and capillary density in the dorsal skin significantly increased with increasing latitude. We also found that the thickness of calcified layers in both dorsal and ventral skin was positively correlated with annual temperature and negatively correlated with humidity. Additionally, terrestrial species exhibited the largest dorsal granular gland, whereas arboreal species had the smallest one. Likewise, the largest dorsal mucous gland was observed in aquatic species, while the smallest was found in terrestrial species. These results highlighted the importance of understanding the relationship between skin phenotypes and environmental variables and thus providing conservation strategies based on the evolutionary adaptations in anurans. Our study can contribute to the broader knowledge of evolutionary biology in anurans by demonstrating how specific skin traits are linked to survival and fitness across various ecological contexts.
期刊介绍:
The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society.
Integrative topics of greatest interest to INZ include:
(1) Animals & climate change
(2) Animals & pollution
(3) Animals & infectious diseases
(4) Animals & biological invasions
(5) Animal-plant interactions
(6) Zoogeography & paleontology
(7) Neurons, genes & behavior
(8) Molecular ecology & evolution
(9) Physiological adaptations