International Biodeterioration & Biodegradation最新文献

筛选
英文 中文
Microbiome changes and characteristics under nutrient injection for enhanced oil production at Daqing oilfield 大庆油田注入营养液强化采油过程中微生物组的变化及特征
IF 4.1 2区 环境科学与生态学
International Biodeterioration & Biodegradation Pub Date : 2024-10-11 DOI: 10.1016/j.ibiod.2024.105934
Zi-Yue Fu , Wen-Tao Chen , Gui-Na Qi , Zhao-wei Hou , Yi-Fan Liu , Li-Bin Shou , Lei Zhou , Shi-Zhong Yang , Xiao-Lin Wu , Ji-Dong Gu , Bo-Zhong Mu
{"title":"Microbiome changes and characteristics under nutrient injection for enhanced oil production at Daqing oilfield","authors":"Zi-Yue Fu ,&nbsp;Wen-Tao Chen ,&nbsp;Gui-Na Qi ,&nbsp;Zhao-wei Hou ,&nbsp;Yi-Fan Liu ,&nbsp;Li-Bin Shou ,&nbsp;Lei Zhou ,&nbsp;Shi-Zhong Yang ,&nbsp;Xiao-Lin Wu ,&nbsp;Ji-Dong Gu ,&nbsp;Bo-Zhong Mu","doi":"10.1016/j.ibiod.2024.105934","DOIUrl":"10.1016/j.ibiod.2024.105934","url":null,"abstract":"<div><div>Current studies on Microbial Enhanced Oil Recovery (MEOR) mainly focus on introducing exogenous microbes or injecting biosurfactants into oil reservoirs, whereas simulating indigenous oil-displacing microorganisms has been less explored. In this study, we conducted MEOR applications on an oil reservoir in Daqing oilfield by injection of only nutrition solution (without microbial strains or biosurfactants), leading to an average increase of 218.6–221.4% in oil production. An alternative stable microbial community dominated by <em>Pseudomonas</em> species was established after MEOR applications, even one year after the termination of the injection. Additionally, members of <em>Ca.</em> Patescibacteria, <em>Ca</em>. Caldatribacteriota (JS1) and hydrogenotrophic methanogens <em>Methanocorpusculum</em> and <em>Methanolinea</em> were found as biomarkers for high oil productivity. These results demonstrate the potential to enhance crude oil production through biosurfactant production, acid and alcohol metabolites production, hydrocarbon degradation and biogas (CH<sub>4</sub> and N<sub>2</sub>) production by the aforementioned stimulated indigenous oil-displacing microorganisms. This research provides theoretical guidance for the exploitation of depleted reservoirs and the extension of the development life of oil reservoirs.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105934"},"PeriodicalIF":4.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolism of Benzo[a]pyrene by Paenibacillus sp. PRNK-6 through novel metabolite phenalene-1,9-dicarboxylic acid Perenibacillus sp. PRNK-6 通过新型代谢物苯并芘-1,9-二羧酸代谢苯并[a]芘
IF 4.1 2区 环境科学与生态学
International Biodeterioration & Biodegradation Pub Date : 2024-10-07 DOI: 10.1016/j.ibiod.2024.105938
S.V. Nagarathna , T.M. Chandramouli Swamy , Pooja V. Reddy , Santosh R. Kanade , Anand S. Nayak
{"title":"Metabolism of Benzo[a]pyrene by Paenibacillus sp. PRNK-6 through novel metabolite phenalene-1,9-dicarboxylic acid","authors":"S.V. Nagarathna ,&nbsp;T.M. Chandramouli Swamy ,&nbsp;Pooja V. Reddy ,&nbsp;Santosh R. Kanade ,&nbsp;Anand S. Nayak","doi":"10.1016/j.ibiod.2024.105938","DOIUrl":"10.1016/j.ibiod.2024.105938","url":null,"abstract":"<div><div>Benzo[a]pyrene (BaP) is a persistent carcinogenic environmental pollutant with high bioaccumulation potential and is resistant to bacterial biodegradation. Therefore, its removal from the biosphere is a priority. In the current study, the bacterial culture <em>Paenibacillus</em> sp. PRNK-6 was evaluated for the degradation of BaP. <em>Paenibacillus</em> sp. PRNK-6 efficiently utilizes BaP as a sole carbon source and degrades 89.43% of BaP within 120 h at an initial concentration of 100 mg L<sup>−1</sup>. Maximum growth was observed at 96 h with 28.96 × 10<sup>7</sup> colony-forming units (CFU). The BaP metabolic intermediates were characterized by High-performance liquid chromatography (HPLC) and, Gas chromatography-mass spectrometry (GC-MS). Based on the metabolite characterization, utilization of probable metabolic intermediates, and investigation of the enzyme involved, a putative pathway of the BaP degradation in PRNK-6 was proposed. The metabolites formed includes a novel ring cleavage metabolite phenalene-1,9-dicarboxylic acid. The two terminal monoaromatic metabolites catechol and protocatechuate (PCA) undergo ring fission by catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase, individually and get into the tricarboxylic acid (TCA) cycle. In both pathways there is no accumulation of any dead-end products. The results suggest that the strain PRNK-6 could be a promising biodegradation tool for high molecular weight polycyclic aromatic hydrocarbons (HMW PAHs) like BaP and may be equally used for bioremediation of other polycyclic aromatic hydrocarbons (PAHs).</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105938"},"PeriodicalIF":4.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contribution of specific extracellular organic matter on membrane fouling in ultrafiltration and coagulation-ultrafiltration of algae-laden water 特定细胞外有机物对超滤和混凝-超滤含藻水的膜堵塞的影响
IF 4.1 2区 环境科学与生态学
International Biodeterioration & Biodegradation Pub Date : 2024-10-07 DOI: 10.1016/j.ibiod.2024.105932
Xiaopeng Qiu , Zijun Liu , Xianpeng Li , Yangtao Wang , Xingtong Wang , Yaozhong Zhang , Jiake Li , Xiaoliang Li , Xin Cao , Xing Zheng
{"title":"Contribution of specific extracellular organic matter on membrane fouling in ultrafiltration and coagulation-ultrafiltration of algae-laden water","authors":"Xiaopeng Qiu ,&nbsp;Zijun Liu ,&nbsp;Xianpeng Li ,&nbsp;Yangtao Wang ,&nbsp;Xingtong Wang ,&nbsp;Yaozhong Zhang ,&nbsp;Jiake Li ,&nbsp;Xiaoliang Li ,&nbsp;Xin Cao ,&nbsp;Xing Zheng","doi":"10.1016/j.ibiod.2024.105932","DOIUrl":"10.1016/j.ibiod.2024.105932","url":null,"abstract":"<div><div>This study explores the specific impact of bound and dissolved extracellular organic matter (bEOM and dEOM), and their collective influence with algal cells on membrane fouling during ultrafiltration (UF) and coagulation-UF of algae-laden water. By characterizing the organic properties and adsorptive behaviors of bEOM and dEOM, and analyzing their subsequent impacts, we clarify their roles and contributions to membrane fouling. Our analyses revealed that bEOM, characterized by its higher molecular weight (MW) and hydrophobic nature, contains more protein-like substances compared to dEOM. Quartz Crystal Microbalance with Dissipation (QCM-D) analysis highlights significant differences in their adsorption behaviors, with bEOM demonstrating greater adhesion and higher adsorptive fouling potential. Despite bEOM's lower concentration relative to dEOM, at a ratio of 0.12–1, their contributions to irreversible membrane resistance are nearly identical, at 30.7% and 30.9% respectively, in the UF of algae-laden water. Coagulation pretreatment effectively reduces bEOM's fouling potential by forming larger flocs, thus minimizing its contact with the membrane. In terms of irreversible membrane resistance, the contributions are 6.5% from cells, 24.8% from bEOM, and 68.6% from dEOM. The presence of dEOM complicates coagulation efficiency due to its low MW components and high hydrophilicity. Using the Hermia model, atomic force microscopy (AFM), and scanning electron microscopy (SEM), we demonstrated how bEOM and dEOM modify membrane fouling mechanisms, particularly by influencing cake layer formation. These insights emphasize the distinct and significant contributions of bEOM and dEOM to membrane fouling, necessitating targeted strategies for their management to enhance the efficiency and sustainability of UF systems in water treatment facilities.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105932"},"PeriodicalIF":4.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of interactive effects of sophorolipids and pine needle biochar augmentation in the process of phytoremediation of Cd contaminated soil using response surface methodology 利用响应面方法评估槐脂和松针生物炭增量在镉污染土壤植物修复过程中的交互效应
IF 4.1 2区 环境科学与生态学
International Biodeterioration & Biodegradation Pub Date : 2024-10-07 DOI: 10.1016/j.ibiod.2024.105936
Vijendra Shah , Achlesh Daverey
{"title":"Assessment of interactive effects of sophorolipids and pine needle biochar augmentation in the process of phytoremediation of Cd contaminated soil using response surface methodology","authors":"Vijendra Shah ,&nbsp;Achlesh Daverey","doi":"10.1016/j.ibiod.2024.105936","DOIUrl":"10.1016/j.ibiod.2024.105936","url":null,"abstract":"<div><div>In present study, response surface methodology (RSM) based central composite design (CCD) was used to study the interactive effect between two individual soil amendments, sophorolipids (SLs) and pine needle biochar for the phytoremediation of Cd contamination and enzymatic activity of soil. The experimented concentrations of SLs and biochar ranged from 0.5 to 2.6 g/kg and 0.4–1.8 %, respectively. The SLs and biochar at the concentration 1.1 g/kg and 1.55 % respectively exhibit the maximum uptake in shoot (125.33 mg/kg) and root (298.27 mg/kg). The results also showed higher <em>R</em><sup><em>2</em></sup> (&gt;0.9) for Cd uptake in <em>B. pilosa</em> and <em>R</em><sup><em>2</em></sup> (&gt;0.85) for soil enzymatic activity using model generated by CCD of RSM. These results signify the reliability of the model and suggested that this model could be used for the prediction of increased metal uptake by plants. The optimum concentrations of SLs and biochar predicted by the CCD were 1.23 g/kg and 1.55 %, respectively with desirability score of 1 for the uptake of Cd in <em>B. pilosa</em>. The results highlighted that application of these amendments can be a pivotal step in the direction of remediation of heavy metal contamination from soil at larger scale.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105936"},"PeriodicalIF":4.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coexistence of diverse metabolic pathways promotes p-cresol biodegradation by Bacillus subtilis ZW 多种代谢途径并存促进枯草芽孢杆菌 ZW 对甲酚的生物降解
IF 4.1 2区 环境科学与生态学
International Biodeterioration & Biodegradation Pub Date : 2024-10-07 DOI: 10.1016/j.ibiod.2024.105933
Xueting Wang , Shihao Liu , Xiaoke Ding , Lele Zhang , Xueru Lv , Jie Li , Caihong Song , Chen Zhang , Shenghui Wang
{"title":"Coexistence of diverse metabolic pathways promotes p-cresol biodegradation by Bacillus subtilis ZW","authors":"Xueting Wang ,&nbsp;Shihao Liu ,&nbsp;Xiaoke Ding ,&nbsp;Lele Zhang ,&nbsp;Xueru Lv ,&nbsp;Jie Li ,&nbsp;Caihong Song ,&nbsp;Chen Zhang ,&nbsp;Shenghui Wang","doi":"10.1016/j.ibiod.2024.105933","DOIUrl":"10.1016/j.ibiod.2024.105933","url":null,"abstract":"<div><div>The aromatic compound p-cresol is a notorious industrial pollutant characterized by its high toxicity, persistence and bioaccumulation within higher organisms. A thorough understanding of the microbial metabolic pathways involved in p-cresol degradation is critical for the design and optimization of microbial wastewater treatment systems. Despite numerous studies on the degradation pathways of p-cresol by various microbial species, the metabolic diversity within a single strain remains largely unexplored. This study investigated the metabolic mechanism of p-cresol in <em>Bacillus subtilis</em> ZW, a bacterium capable of degrading p-cresol. Through LC-MS analysis, we identified twelve distinct metabolic intermediates in the culture of strain ZW, leading to the proposal of three plausible degradation pathways. These include methyl hydroxylation, direct aromatic ring hydroxylation, and phosphorylation of the hydroxyl group, and all of which may concurrently contribute to p-cresol biodegradation by strain ZW. Further study showed that the genome of strain ZW harbored 47 coding genes associated with the degradation of p-cresol and its structural analogs, underscoring the metabolic versatility of this strain and its potential for xenobiotic biodegradation. These findings contribute valuable insights into the biodegradation mechanisms of pollutants. Under optimal degradation conditions of 35 °C and pH 7.0, strain ZW demonstrated the capacity to metabolize 27.5 % of p-cresol (10 mg/L) in minimal salt media within a week, and was capable of completely degrading 10 mg/L p-cresol in wastewater within five days. The potential utility of strain ZW in the bioremediation of p-cresol and other aromatic compounds is thus evident.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105933"},"PeriodicalIF":4.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shore-to-water spatial variations of complete ammonia oxidizers in a lake in Wuhan, China 中国武汉一个湖泊中完全氨氧化剂从岸到水的空间变化
IF 4.1 2区 环境科学与生态学
International Biodeterioration & Biodegradation Pub Date : 2024-10-05 DOI: 10.1016/j.ibiod.2024.105931
Jianzhao Li , Yangfan Xu , Longfei Li , Naidong Xiao , Mengjie Qu , Xiaoqiong Wan , Yumei Hua , Jianwei Zhao
{"title":"Shore-to-water spatial variations of complete ammonia oxidizers in a lake in Wuhan, China","authors":"Jianzhao Li ,&nbsp;Yangfan Xu ,&nbsp;Longfei Li ,&nbsp;Naidong Xiao ,&nbsp;Mengjie Qu ,&nbsp;Xiaoqiong Wan ,&nbsp;Yumei Hua ,&nbsp;Jianwei Zhao","doi":"10.1016/j.ibiod.2024.105931","DOIUrl":"10.1016/j.ibiod.2024.105931","url":null,"abstract":"<div><div>Complete ammonia oxidizers (comammox bacteria) can convert ammonia into nitric acid through single-step nitrification. This study explored the spatial variations of comammox bacteria in the lakeshore area of the Houguan Lake in Wuhan, China. The abundance of the two comammox bacteria clades and two traditional ammonia-oxidizing microorganisms, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), generally showed a gradually decreasing trend from the shore to the water. Moreover, a similar decreasing trend was observed for the respective and total nitrification rate of three types of ammonia-oxidizing microorganisms. The average nitrification rate of AOA, AOB and comammox bacteria was 0.568, 0.718, and 0.935 mg N kg<sup>−1</sup> d<sup>−1</sup>, respectively. Besides, comammox bacteria exhibited a high biological diversity, with clade A and clade B and three subclades of clade A all present. Among different clades, clade B played a dominant role in the ammonia oxidation process. Both the abundance and nitrification rate of comammox bacteria were significantly positively correlated with total carbon and total nitrogen, indicating that these two nutrient substances are important factors influencing this microorganism. Our results demonstrate that the spatial variations of environmental elements in the lakeshore area lead to gradual decreases of comammox bacteria from the shore to the water.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105931"},"PeriodicalIF":4.1,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A systematic evaluation of alkaliphilic microbial consortia from a soda lake for the biodegradation of cyanide-rich wastewater 系统评估苏打湖中嗜碱性微生物联合体对富氰废水的生物降解作用
IF 4.1 2区 环境科学与生态学
International Biodeterioration & Biodegradation Pub Date : 2024-10-05 DOI: 10.1016/j.ibiod.2024.105937
Getnet Belay , Carolina Suarez , Addis Simachew , Catherine J. Paul
{"title":"A systematic evaluation of alkaliphilic microbial consortia from a soda lake for the biodegradation of cyanide-rich wastewater","authors":"Getnet Belay ,&nbsp;Carolina Suarez ,&nbsp;Addis Simachew ,&nbsp;Catherine J. Paul","doi":"10.1016/j.ibiod.2024.105937","DOIUrl":"10.1016/j.ibiod.2024.105937","url":null,"abstract":"<div><div>Alkaliphilic microorganisms are one option for the treatment of cyanide-polluted wastewater. This study reports the degradation of cyanide from simulated gold mine wastewater using alkaliphilic microbial consortia harvested from a soda lake, Lake Chitu, Ethiopia. A novel aerobic-anoxic integrated treatment setup was established for the treatment process. Colorimetry was used to measure residual cyanide concentration, and 16S rRNA amplicon gene sequencing was used to study microbial diversity. This treatment system was able to degrade 97.49 ± 0.12% of 200 mg/L sodium cyanide. However, changes were observed (p &lt; 0.05) when the established consortia were stressed with heavy metals. About 28 % of the initial inoculum persisted until the end of the treatment days. Twenty-eight bacterial phyla were identified, with Firmicutes, Proteobacteria, and Bacteroidota being the most abundant. At the end of the treatment process, <em>Alkalibacterium</em> (74.43%), <em>Exaguobacterium</em> (6.6%), and <em>Halomonas</em> (3.89%) were dominant. These findings indicate that alkaliphilic microbial consortiums from Ethiopian Rift Valley soda lakes are effective for the treatment of cyanide-polluted wastewater.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105937"},"PeriodicalIF":4.1,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced degradation of crude oil by immobilized bacterial consortium through eliminating microbial flocculation towards crude oil 通过消除微生物对原油的絮凝作用,提高固定化细菌群对原油的降解能力
IF 4.1 2区 环境科学与生态学
International Biodeterioration & Biodegradation Pub Date : 2024-10-02 DOI: 10.1016/j.ibiod.2024.105935
Zheng-Fei Yan , Qing-Song Huang , Jing Yang , Xue-Yi Qiao , Bo Xu , Wei Xia , Ling-Qia Su
{"title":"Enhanced degradation of crude oil by immobilized bacterial consortium through eliminating microbial flocculation towards crude oil","authors":"Zheng-Fei Yan ,&nbsp;Qing-Song Huang ,&nbsp;Jing Yang ,&nbsp;Xue-Yi Qiao ,&nbsp;Bo Xu ,&nbsp;Wei Xia ,&nbsp;Ling-Qia Su","doi":"10.1016/j.ibiod.2024.105935","DOIUrl":"10.1016/j.ibiod.2024.105935","url":null,"abstract":"<div><div>Microbial degradation is considered an effective and sustainable technique for the remediation of oily sludge; thus, the acquisition of crude oil-degrading bacteria is crucial for effective bioremediation. This study introduces a novel domestication-enrichment-isolation (DEI) strategy to isolate crude oil-degrading bacteria from oily sludge. Two strains, <em>Rhodococcus rhodochrous</em> JS-24 (R.rh) and <em>Gordonia cholesterolivorans</em> JS-13 (G.ch), demonstrated the highest degradation rates of 53.7% and 34.6%, respectively, within 7 days. While no synergistic effect was observed with their combined use in free bacterial consortia, and the overall degradation rate decreased to 51.9 %, which was weaker than that of R. rh treatment alone. The decrease in degradation rate is attributed to microbial flocculation towards crude oil: most droplets of crude oil were encapsulated into spherical aggregations by G. ch, thereby hindering the contact and degradation of droplets by R. rh. In contrast, immobilization technology significantly enhanced crude oil degradation by eliminating this flocculation effect. The immobilized bacterial consortium achieved a 95.5% degradation rate, representing the highest degradation rate reported for bacterial consortia. This study reveals for the first time that the side effects of bioflocculation on crude oil degradation and provides guidance for the construction of bacterial consortium.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105935"},"PeriodicalIF":4.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradation mechanism of asphalt by microbial consortia in asphalt pavement of forest area road 林区道路沥青路面微生物群对沥青的生物降解机理
IF 4.1 2区 环境科学与生态学
International Biodeterioration & Biodegradation Pub Date : 2024-09-27 DOI: 10.1016/j.ibiod.2024.105930
Qiangqiang Xia, Lisha Shi, Ding Ma, Tao Xu
{"title":"Biodegradation mechanism of asphalt by microbial consortia in asphalt pavement of forest area road","authors":"Qiangqiang Xia,&nbsp;Lisha Shi,&nbsp;Ding Ma,&nbsp;Tao Xu","doi":"10.1016/j.ibiod.2024.105930","DOIUrl":"10.1016/j.ibiod.2024.105930","url":null,"abstract":"<div><div>To study the degradation behaviors of asphalt by microorganisms and reveal biodegradation mechanism of asphalt, 16S rRNA full-length sequencing was utilized to analyze the collected samples from three forest areas. Five strains, namely <em>Sphingomonas polyaromaticivorans</em>, <em>Pseudomonas putida</em>, <em>Pseudomonas fluorescens</em>, <em>Bacillus cereus</em>, and <em>Bacillus subtilis</em>, were selected for compounding microbial consortium to study its degradation effects on asphalt. The micromorphology, elemental chemical states, micromechanical properties, molecular weight distribution, and functional groups of degraded asphalt were studied using environmental scanning electron microscopy, X-ray photoelectron spectroscopy, atomic force microscopy, gel permeation chromatography, and Fourier transform infrared spectroscopy. The results show that the biodegradation of asphalt by microbial consortium increases the surface roughness of asphalt and reduces surface adhesion. Asphalt is used as the sole carbon source by microbial consortium, resulting in a continuous decrease in the contents of C and N elements, while the content of O element is continuously increased. Simultaneously, under the action of microbial enzymes, C-C/C-H bonds which are combined with molecular oxygen in asphalt are continuously broken and converted to C-O-C/C-O-H bonds. The continuous reductions in methylene index and butadiene index of asphalt, as well as the production of carbonyl functional groups confirm the oxidative degradation of asphalt by microbial consortium. Additionally, with the extension of degradation time, the large molecular substances in asphalt are gradually degraded by microbial consortium, leading to a more concentrated molecular weight distribution. This study is of great importance to understand biodegradation mechanism of asphalt.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105930"},"PeriodicalIF":4.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic remediation of electroplating wastewater contaminated soil and reduction of risk of groundwater contamination by biochar and Pseudomonas hibiscicola strain L1 生物炭和木槿假单胞菌菌株 L1 协同修复电镀废水污染土壤并降低地下水污染风险
IF 4.1 2区 环境科学与生态学
International Biodeterioration & Biodegradation Pub Date : 2024-09-26 DOI: 10.1016/j.ibiod.2024.105926
Binbin Ran , Qiang An , Shuman Deng , Jiali Song , Zhiruo Huang , Bin Zhao
{"title":"Synergistic remediation of electroplating wastewater contaminated soil and reduction of risk of groundwater contamination by biochar and Pseudomonas hibiscicola strain L1","authors":"Binbin Ran ,&nbsp;Qiang An ,&nbsp;Shuman Deng ,&nbsp;Jiali Song ,&nbsp;Zhiruo Huang ,&nbsp;Bin Zhao","doi":"10.1016/j.ibiod.2024.105926","DOIUrl":"10.1016/j.ibiod.2024.105926","url":null,"abstract":"<div><div>With the continuous development of electroplating industry, a large amount of electroplating wastewater is generated, which can be harmful to soil and basement. Introducing microorganisms into polluted soil can improve the soil environment, but it has the disadvantages of easy loss and low activity. In this study, the synergistic effect of biochar and strain L1 (BL1) was utilized to effectively reduce the risk of groundwater contamination by Ni(II), Cu(II), Cr(VI), and Zn(II), which are common heavy metals in electroplating wastewater. And the mechanism was found as BL1 was found to increase the porosity and water retention of the soil by specific surface area determination (BET) and scanning electron microscopy (SEM), favored the growth of soil microorganisms. It was found that BL1 could improve soil pH, enzyme activity, total organic carbon and other indicators by measuring soil physical and chemical properties. The results of microbial community analysis showed that BL1 increased the diversity of soil community and enriched microorganisms with nitrification and denitrification functions, thus promoting the removal of NH<sub>4</sub><sup>+</sup>-N and NO<sub>3</sub>-N. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) diffraction results showed that -OH, -CH, C=O, Si-O-Si, CO<sub>3</sub><sup>2−</sup> and PO<sub>4</sub><sup>3−</sup> of BL1 complexed with heavy metals to form precipitates. Thus, the conversion of heavy metals to the stable state was promoted. These results show that the addition of BL1 can effectively improve the soil environment and promote the self-recovery of soil function.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105926"},"PeriodicalIF":4.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信