Inflammation Research最新文献

筛选
英文 中文
Stored RBC transfusions leads to the systemic inflammatory response syndrome in anemic murine neonates. 储存的红细胞输血会导致贫血小鼠新生儿出现全身炎症反应综合征。
IF 4.8 3区 医学
Inflammation Research Pub Date : 2024-11-01 Epub Date: 2024-09-05 DOI: 10.1007/s00011-024-01936-y
Balamurugan Ramatchandirin, Marie Amalie Balamurugan, Suneetha Desiraju, Yerin Chung, Boguslaw S Wojczyk, Krishnan MohanKumar
{"title":"Stored RBC transfusions leads to the systemic inflammatory response syndrome in anemic murine neonates.","authors":"Balamurugan Ramatchandirin, Marie Amalie Balamurugan, Suneetha Desiraju, Yerin Chung, Boguslaw S Wojczyk, Krishnan MohanKumar","doi":"10.1007/s00011-024-01936-y","DOIUrl":"10.1007/s00011-024-01936-y","url":null,"abstract":"<p><strong>Objective: </strong>RBC transfusions (RBCT) are life-saving treatment for premature and critically ill infants. However, the procedure has been associated with the development of systemic inflammatory response syndrome (SIRS) and potentially multiple organ dysfunction syndrome (MODS) in neonates. The present study aimed to investigate the mechanisms of RBCT-related SIRS in severely anemic murine neonates.</p><p><strong>Methods: </strong>C57BL/6 (WT), TLR4<sup>-/-</sup> and myeloid-specific triggered myeloid receptor-1 (trem1)<sup>-/-</sup> mouse pups were studied in 4 groups (n = 6 each): (1) naïve controls, (2) transfused control, (3) anemic (hematocrit 20-24%) and (4) anemic with RBC transfused using our established murine model of phlebotomy-induced anemia (PIA) and RBC transfusion. Plasma was measured for quantifying inflammatory cytokines (IFN-γ, IL-1β, TNF-α, IL-6, MIP-1α, MIP-1β, MIP2 and LIX) using a Luminex assay. In vitro studies included (i) sensitization by exposing the cells to a low level of lipopolysaccharide (LPS; 500 ng/ml) and (ii) trem1-siRNA transfection with/without plasma supernatant from stored RBC to assess the acute inflammatory response through trem1 by qRT-PCR and immunoblotting.</p><p><strong>Results: </strong>Anemic murine pups developed cytokine storm within 2 h of receiving stored RBCs, which increased until 6 h post-transfusion, as compared to non-anemic mice receiving stored RBCTs (\"transfusion controls\"), in a TLR4-independent fashion. Nonetheless, severely anemic pups had elevated circulating endotoxin levels, thereby sensitizing circulating monocytes to presynthesize proinflammatory cytokines (IFN-γ, IL-1β, TNF-α, IL-6, MIP-1α, MIP-1β, MIP2, LIX) and express trem1. Silencing trem1 expression in Raw264.7 cells mitigated both endotoxin-associated presynthesis of proinflammatory cytokines and the RBCT-induced release of inflammatory cytokines. Indeed, myeloid-specific trem1<sup>-/-</sup> murine pups had significantly reduced evidence of SIRS following RBCTs.</p><p><strong>Conclusion: </strong>Severe anemia-associated low-grade inflammation sensitizes monocytes to enhance the synthesis of proinflammatory cytokines and trem1. In this setting, RBCTs further activate these monocytes, thereby inducing SIRS. Inhibiting trem1 in myeloid cells, including monocytes, alleviates the inflammatory response associated with the combined effects of anemia and RBCTs in murine neonates.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1859-1873"},"PeriodicalIF":4.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel molecular classification based on efferocytosis-related genes for predicting clinical outcome and treatment response in acute myeloid leukemia. 基于流出细胞相关基因的新型分子分类法,用于预测急性髓性白血病的临床结果和治疗反应。
IF 4.8 3区 医学
Inflammation Research Pub Date : 2024-11-01 Epub Date: 2024-09-02 DOI: 10.1007/s00011-024-01938-w
Fangmin Zhong, Fangyi Yao, Qin Bai, Jing Liu, Xiaolin Li, Bo Huang, Xiaozhong Wang
{"title":"A novel molecular classification based on efferocytosis-related genes for predicting clinical outcome and treatment response in acute myeloid leukemia.","authors":"Fangmin Zhong, Fangyi Yao, Qin Bai, Jing Liu, Xiaolin Li, Bo Huang, Xiaozhong Wang","doi":"10.1007/s00011-024-01938-w","DOIUrl":"10.1007/s00011-024-01938-w","url":null,"abstract":"<p><strong>Background: </strong>Previous studies have shown that macrophage-mediated efferocytosis is involved in immunosuppression in acute myeloid leukemia (AML). However, the regulatory role of efferocytosis in AML remains unclear and needs further elucidation.</p><p><strong>Methods: </strong>We first identified the key efferocytosis-related genes (ERGs) based on the expression matrix. Efferocytosis-related molecular subtypes were obtained by consensus clustering algorithm. Differences in immune landscape and biological processes among molecular subtypes were further evaluated. The efferocytosis score model was constructed to quantify molecular subtypes and evaluate its value in prognosis prediction and treatment decision-making in AML.</p><p><strong>Results: </strong>Three distinct efferocytosis-related molecular subtypes were identified and divided into immune activation, immune desert, and immunosuppression subtypes based on the characteristics of the immune landscape. We evaluated the differences in clinical and biological features among different molecular subtypes, and the construction of an efferocytosis score model can effectively quantify the subtypes. A low efferocytosis score is associated with immune activation and reduced mutation frequency, and patients have a better prognosis. A high efferocytosis score reflects immune exhaustion, increased activity of tumor marker pathways, and poor prognosis. The prognostic predictive value of the efferocytosis score model was confirmed in six AML cohorts. Patients exhibiting high efferocytosis scores may derive therapeutic benefits from anti-PD-1 immunotherapy, whereas those with low efferocytosis scores tend to exhibit greater sensitivity towards chemotherapy. Analysis of treatment data in ex vivo AML cells revealed a group of drugs with significant differences in sensitivity between different efferocytosis score groups. Finally, we validated model gene expression in a clinical cohort.</p><p><strong>Conclusions: </strong>This study reveals that efferocytosis plays a non-negligible role in shaping the diversity and complexity of the AML immune microenvironment. Assessing the individual efferocytosis-related molecular subtype in individuals will help to enhance our understanding of the characterization of the AML immune landscape and guide the establishment of more effective clinical treatment strategies.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1889-1902"},"PeriodicalIF":4.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of glycolytic reprogramming suppresses innate immune-mediated inflammation in experimental amyotrophic lateral sclerosis. 抑制糖酵解重编程可抑制实验性肌萎缩侧索硬化症中先天性免疫介导的炎症。
IF 4.8 3区 医学
Inflammation Research Pub Date : 2024-11-01 Epub Date: 2024-08-21 DOI: 10.1007/s00011-024-01935-z
Lewis Yu, Nancy Wu, Okmi Choi, Khoa Dinh Nguyen
{"title":"Inhibition of glycolytic reprogramming suppresses innate immune-mediated inflammation in experimental amyotrophic lateral sclerosis.","authors":"Lewis Yu, Nancy Wu, Okmi Choi, Khoa Dinh Nguyen","doi":"10.1007/s00011-024-01935-z","DOIUrl":"10.1007/s00011-024-01935-z","url":null,"abstract":"<p><strong>Background: </strong>Innate immune activation has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). However, metabolic pathways that govern this bioenergetically demanding process in ALS remains elusive. Here we investigated whether and how immunometabolic transformation of innate immune cells contributes to disease progression in an experimental model of this neurodegenerative disease.</p><p><strong>Methods: </strong>We utilized multidimensional flow cytometry and integrative metabolomics to characterize the immunometabolic phenotype of circulating and spinal cord innate immune cells in the B6SJL-Tg(SOD1*G93A)1Gur/J model of ALS (SOD1-G93A) at various disease stages (before vs. after the onset of motor dysfunction). Behavioral and survival analyses were also conducted to determine the impact of an energy-regulating compound on innate immune cell metabolism, inflammation, and disease development.</p><p><strong>Results: </strong>Temporally coordinated accumulation of circulating inflammatory Ly6C + monocytes and spinal cord F4/80 + CD45<sup>hi</sup> infiltrates precedes the onset of motor dysfunction in SOD1-G93A mice. Subsequent metabolomic analysis reveals that this phenomenon is accompanied by glycolytic reprogramming of spinal cord inflammatory CD11b + cells, comprising both resident F4/80 + CD45<sup>low</sup> microglia and F4/80 + CD45<sup>hi</sup> infiltrates. Furthermore, pharmacologic inhibition of glycolysis by ZLN005, a small molecule activator of Ppargc1a, restrains inflammatory glycolytic activation of spinal cord CD11b + cells, enhances motor function, and prolongs survival in SOD1-G93A mice.</p><p><strong>Conclusions: </strong>These observations suggest that modulation of inflammatory glycolytic reprogramming of innate immune cells may represent a promising therapeutic approach in ALS.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1847-1857"},"PeriodicalIF":4.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclic adenosine monophosphate critically modulates cardiac GLP-1 receptor's anti-inflammatory effects. 单磷酸环磷酸腺苷对心脏 GLP-1 受体的抗炎作用有重要调节作用。
IF 4.8 3区 医学
Inflammation Research Pub Date : 2024-11-01 Epub Date: 2024-09-21 DOI: 10.1007/s00011-024-01950-0
Renee A Stoicovy, Natalie Cora, Arianna Perez, Deepika Nagliya, Giselle Del Calvo, Teresa Baggio Lopez, Emma C Weinstein, Jordana I Borges, Jennifer Maning, Anastasios Lymperopoulos
{"title":"Cyclic adenosine monophosphate critically modulates cardiac GLP-1 receptor's anti-inflammatory effects.","authors":"Renee A Stoicovy, Natalie Cora, Arianna Perez, Deepika Nagliya, Giselle Del Calvo, Teresa Baggio Lopez, Emma C Weinstein, Jordana I Borges, Jennifer Maning, Anastasios Lymperopoulos","doi":"10.1007/s00011-024-01950-0","DOIUrl":"10.1007/s00011-024-01950-0","url":null,"abstract":"<p><strong>Background: </strong>Glucagon-like peptide (GLP)-1 receptor (GLP1R) agonists exert a multitude of beneficial cardiovascular effects beyond control of blood glucose levels and obesity reduction. They also have anti-inflammatory actions through both central and peripheral mechanisms. GLP1R is a G protein-coupled receptor (GPCR), coupling to adenylyl cyclase (AC)-stimulatory Gs proteins to raise cyclic 3`-5`-adenosine monophosphate (cAMP) levels in cells. cAMP exerts various anti-apoptotic and anti-inflammatory effects via its effectors protein kinase A (PKA) and Exchange protein directly activated by cAMP (Epac). However, the precise role and importance of cAMP in mediating GLP1R`s anti-inflammatory actions, at least in the heart, remains to be determined. To this end, we tested the effects of the GLP1R agonist liraglutide on lipopolysaccharide (LPS)-induced acute inflammatory injury in H9c2 cardiac cells, either in the absence of cAMP production (AC inhibition) or upon enhancement of cAMP levels via phosphodiesterase (PDE)-4 inhibition with roflumilast.</p><p><strong>Methods & results: </strong>Liraglutide dose-dependently inhibited LPS-induced apoptosis and increased cAMP levels in H9c2 cells, with roflumilast but also PDE8 inhibition further enhancing cAMP production by liraglutide. GLP1R-stimulated cAMP markedly suppressed the LPS-dependent induction of pro-inflammatory tumor necrosis factor (TNF)-a, interleukin (IL)-1b, and IL-6 cytokine expression, of inducible nitric oxide synthase (iNOS) expression and nuclear factor (NF)-kB activity, of matrix metalloproteinases (MMP)-2 and MMP-9 levels and activities, and of myocardial injury markers in H9c2 cardiac cells. The effects of liraglutide were mediated by the GLP1R since they were abolished by the GLP1R antagonist exendin(9-39). Importantly, AC inhibition completely abrogated liraglutide`s suppression of LPS-dependent inflammatory injury, whereas roflumilast significantly enhanced the protective effects of liraglutide against LPS-induced inflammation. Finally, PKA inhibition or Epac1/2 inhibition alone only partially blocked liraglutide`s suppression of LPS-induced inflammation in H9c2 cardiac cells, but, together, PKA and Epac1/2 inhibition fully prevented liraglutide from reducing LPS-dependent inflammation.</p><p><strong>Conclusions: </strong>cAMP, via activation of both PKA and Epac, is essential for GLP1R`s anti-inflammatory signaling in cardiac cells and that cAMP levels crucially regulate the anti-inflammatory efficacy of GLP1R agonists in the heart. Strategies that elevate cardiac cAMP levels, such as PDE4 inhibition, may potentiate the cardiovascular, including anti-inflammatory, benefits of GLP1R agonist drugs.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"2043-2056"},"PeriodicalIF":4.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142286100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Olink proteomics and lipidomics analysis of serum from patients infected with non-tuberculous mycobacteria and Mycobacterium tuberculosis. 对感染非结核分枝杆菌和结核分枝杆菌的患者血清进行 Olink 蛋白质组学和脂质组学分析。
IF 4.8 3区 医学
Inflammation Research Pub Date : 2024-11-01 Epub Date: 2024-09-28 DOI: 10.1007/s00011-024-01943-z
Li Wang, Guoling Yang, Liang Guo, Lan Yao, Yidian Liu, Wei Sha
{"title":"Olink proteomics and lipidomics analysis of serum from patients infected with non-tuberculous mycobacteria and Mycobacterium tuberculosis.","authors":"Li Wang, Guoling Yang, Liang Guo, Lan Yao, Yidian Liu, Wei Sha","doi":"10.1007/s00011-024-01943-z","DOIUrl":"10.1007/s00011-024-01943-z","url":null,"abstract":"<p><strong>Background: </strong>Non-tuberculous mycobacterial (NTM) and Mycobacterium tuberculosis (MTB) infections are difficult to diagnose and treat, significantly burdening global health. The host immune status is generally believed to be associated with the onset and progression of NTM and MTB infections, but its specific impact remains unclear.</p><p><strong>Methods: </strong>In the present study, proteomics and lipidomics analysis of serum from normal controls (n = 26) and patients with MTB (n = 26), rapidly growing NTM (RGM, n = 15), and slowly growing NTM (SGM, n = 21) were conducted using the Olink technique based on a highly sensitive and specific neighborhood extension assay and the lipidomics technique.</p><p><strong>Results: </strong>IFN-γ, CXCL9, CXCL10, CXCL11, and CXCL13, etc. were simultaneously upregulated in MTB, RGM, and SGM, while lipids FAHFA 22:3, FAHFA 26:4, FAHFA 24:4, FAHFA 20:5, FAHFA 18:2 simultaneously downregulated. IL8, CCL3, CXCL5, and MCP-2, etc. were simultaneously upregulated in RGM and SGM compared to MTB, as well as PCs, LPCs, PEs, and LPEs. Compared with RGM, IL7, CD27, CCL17, CXCL12, and LPC 28:7-SN2 were downregulated in SGM. Pathway analyses revealed that tuberculosis, sphingolipid signaling pathway, and adipocytokine signaling pathway were regulated at the protein level and metabolite level. Diagnostic panels comprising immune-associated proteins and lipids greatly enhance diagnostic specificity and sensitivity.</p><p><strong>Conclusion: </strong>This integrated multi-omics analysis provides a more comprehensive understanding of the molecular landscape of NTM and MTB, which may provide molecular targets for specialized therapies.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1945-1960"},"PeriodicalIF":4.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541342/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calprotectin is regulated by IL-17A and induces steroid hyporesponsiveness in asthma. 钙蛋白受 IL-17A 调节,并诱导哮喘患者对类固醇的低反应性。
IF 4.8 3区 医学
Inflammation Research Pub Date : 2024-11-01 Epub Date: 2024-08-30 DOI: 10.1007/s00011-024-01937-x
Narjes Saheb Sharif-Askari, Bushra Mdkhana, Shirin Hafezi, Bariaa A Khalil, Baraa Khalid Al-Sheakly, Hala Halwani, Fatemeh Saheb Sharif-Askari, Rabih Halwani
{"title":"Calprotectin is regulated by IL-17A and induces steroid hyporesponsiveness in asthma.","authors":"Narjes Saheb Sharif-Askari, Bushra Mdkhana, Shirin Hafezi, Bariaa A Khalil, Baraa Khalid Al-Sheakly, Hala Halwani, Fatemeh Saheb Sharif-Askari, Rabih Halwani","doi":"10.1007/s00011-024-01937-x","DOIUrl":"10.1007/s00011-024-01937-x","url":null,"abstract":"<p><strong>Background: </strong>Calprotectin, a calcium-binding protein, plays a crucial role in inflammation and has been associated with various inflammatory diseases, including asthma. However, its regulation and impact on steroid hyporesponsiveness, especially in severe asthma, remain poorly understood.</p><p><strong>Methods: </strong>This study investigated the regulation of calprotectin proteins (S100A8 and S100A9) by IL-17 and its role in steroid hyporesponsiveness using in vitro and in vivo models. Calprotectin expression was assessed in primary bronchial fibroblasts from healthy controls and severe asthmatic patients, as well as in mouse models of steroid hyporesponsive lung inflammation induced by house dust mite (HDM) allergen and cyclic-di-GMP (cdiGMP) adjuvant. The effects of IL-17A stimulation on calprotectin expression and steroid response markers in bronchial epithelial and fibroblast cells were examined. Additionally, the therapeutic potential of paquinimod, a calprotectin inhibitor, in mitigating airway inflammation and restoring steroid response signatures in the mouse model was evaluated.</p><p><strong>Results: </strong>The results demonstrated upregulation of calprotectin expression in asthmatic bronchial fibroblasts compared to healthy controls, as well as in refractory asthma samples compared to non-refractory asthma. IL-17 stimulation induced calprotectin expression and dysregulated glucocorticoid response signatures in lung epithelial and fibroblast cells. Treatment with paquinimod reversed IL-17-induced dysregulation of steroid signatures, indicating the involvement of calprotectin in this process. In the HDM/cdiGMP mouse model, paquinimod significantly attenuated airway inflammation and hyperresponsiveness, and restored steroid response signatures, whereas dexamethasone showed limited efficacy. Mechanistically, paquinimod inhibited MAPK/ERK and NF-κB pathways downstream of calprotectin, leading to reduced lung inflammation.</p><p><strong>Conclusion: </strong>These findings highlight calprotectin as a potential therapeutic target regulated by IL-17 in steroid hyporesponsive asthma. Targeting calprotectin may offer a promising approach to alleviate airway inflammation and restore steroid responsiveness in severe asthma. Further investigations are warranted to explore its therapeutic potential in clinical settings and elucidate its broader implications in steroid mechanisms of action.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1875-1888"},"PeriodicalIF":4.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142106952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant extracts and omega-3 supplementation modulate hippocampal oxylipin profile in response to LPS-induced neuroinflammation. 植物提取物和欧米伽-3补充剂可调节海马氧脂素对LPS诱导的神经炎症的反应。
IF 4.8 3区 医学
Inflammation Research Pub Date : 2024-11-01 Epub Date: 2024-09-28 DOI: 10.1007/s00011-024-01947-9
Marie Martin, Emie Debenay, Jeanne Bardinet, Adrien Peltier, Line Pourtau, David Gaudout, Sophie Layé, Véronique Pallet, Anne-Laure Dinel, Corinne Joffre
{"title":"Plant extracts and omega-3 supplementation modulate hippocampal oxylipin profile in response to LPS-induced neuroinflammation.","authors":"Marie Martin, Emie Debenay, Jeanne Bardinet, Adrien Peltier, Line Pourtau, David Gaudout, Sophie Layé, Véronique Pallet, Anne-Laure Dinel, Corinne Joffre","doi":"10.1007/s00011-024-01947-9","DOIUrl":"10.1007/s00011-024-01947-9","url":null,"abstract":"<p><strong>Objective and design: </strong>Neuroinflammation is a protective mechanism but can become harmful if chronic and/or unregulated, leading to neuronal damage and cognitive alterations. Limiting inflammation and promoting resolution could be achieved with nutrients such as grapes and blueberries polyphenols, saffron carotenoids, and omega-3, which have anti-inflammatory and proresolutive properties.</p><p><strong>Methods: </strong>This study explored the impact of 18-day supplementation with plant extracts (grape, blueberry and saffron), omega-3 or both (mix) on neuroinflammation induced by lipopolysaccharide (LPS, 250 µg/kg) in 149 mice at different time points post-LPS treatment (30 min, 2 h, 6 h). Inflammatory, oxidative and neuroprotective gene expression; oxylipin quantification; and fatty acid composition were analyzed at each time point. PCA analysis was performed with all these biomarkers.</p><p><strong>Results: </strong>Mix supplementation induced changes in the resolution of inflammation. In fact, the production of proinflammatory mediators in the hippocampus started earlier in the supplemented group than in the LPS group. Pro-resolving mediators were also found in higher quantities in supplemented mice. These changes were associated with increased hippocampal antioxidant status at 6 h post-LPS.</p><p><strong>Conclusions: </strong>These findings suggest that such dietary interventions with plant extracts, and omega-3 could be beneficial in preventing neuroinflammation and, consequently, age-related cognitive decline. Further research is needed to explore the effects of these supplements on chronic inflammation in the context of aging.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"2023-2042"},"PeriodicalIF":4.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541341/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probiotic nucleotides increase IL-10 expression in airway macrophages to mitigate airway allergy. 益生菌核苷酸能增加气道巨噬细胞中 IL-10 的表达,从而缓解气道过敏。
IF 4.8 3区 医学
Inflammation Research Pub Date : 2024-11-01 Epub Date: 2024-09-05 DOI: 10.1007/s00011-024-01940-2
Jinmei Xue, Zhizhen Liu, Bailing Xie, Rui Dong, Juan Wu, Yisha Wu, Zhihan Xu, Yuhe Tian, Yao Wei, Zhigang Geng, Lei Lu, Yu Liu, Jun Xie, Pingchang Yang
{"title":"Probiotic nucleotides increase IL-10 expression in airway macrophages to mitigate airway allergy.","authors":"Jinmei Xue, Zhizhen Liu, Bailing Xie, Rui Dong, Juan Wu, Yisha Wu, Zhihan Xu, Yuhe Tian, Yao Wei, Zhigang Geng, Lei Lu, Yu Liu, Jun Xie, Pingchang Yang","doi":"10.1007/s00011-024-01940-2","DOIUrl":"10.1007/s00011-024-01940-2","url":null,"abstract":"<p><strong>Background: </strong>Dysfunctional immune regulation plays a crucial role in the pathogenesis of airway allergies. Macrophages are one of the components of the immune regulation cells. The aim of this study is to elucidate the role of lysine demethylase 5 A (KDM5A) in maintaining macrophages' immune regulatory ability.</p><p><strong>Methods: </strong>DNA was extracted from Lactobacillus rhamnosus GG to be designated as LgDNA. LgDNA was administered to the mice through nasal instillations. M2 macrophages (M2 cells) were isolated from the airway tissues using flow cytometry.</p><p><strong>Results: </strong>We found that airway M2 cells of mice with airway Th2 polarization had reduced amounts of IL-10 and KDM5A. Mice with Kdm5a deficiency in M2 cells showed the airway Th2 polarization. The expression of Kdm5a in airway M2 cells was enhanced by nasal instillations containing LgDNA. KDM5A mediated the effects of LgDNA on inducing the Il10 expression in airway M2 cells. Administration of LgDNA mitigated experimental airway allergy.</p><p><strong>Conclusions: </strong>M2 macrophages in the airway tissues of mice with airway allergy show low levels of KDM5A. By upregulating KDM5A expression, LgDNA can increase Il10 expression and reconcile airway Th2 polarization.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1919-1930"},"PeriodicalIF":4.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of Pim-1 kinases in inflammatory signaling pathways. Pim-1 激酶在炎症信号通路中的作用。
IF 4.8 3区 医学
Inflammation Research Pub Date : 2024-10-01 Epub Date: 2024-07-30 DOI: 10.1007/s00011-024-01924-2
Hye Suk Baek, Nacksung Kim, Jong Wook Park, Taeg Kyu Kwon, Shin Kim
{"title":"The role of Pim-1 kinases in inflammatory signaling pathways.","authors":"Hye Suk Baek, Nacksung Kim, Jong Wook Park, Taeg Kyu Kwon, Shin Kim","doi":"10.1007/s00011-024-01924-2","DOIUrl":"10.1007/s00011-024-01924-2","url":null,"abstract":"<p><strong>Objective and design: </strong>This observational study investigated the regulatory mechanism of Pim-1 in inflammatory signaling pathways.</p><p><strong>Materials: </strong>THP-1, RAW 264.7, BV2, and Jurkat human T cell lines were used.</p><p><strong>Treatment: </strong>None.</p><p><strong>Methods: </strong>Lipopolysaccharide (LPS) was used to induce inflammation, followed by PIM1 knockdown. Western blot, immunoprecipitation, immunofluorescence, and RT-PCR assays were used to assess the effect of PIM1 knockdown on LPS-induced inflammation.</p><p><strong>Results: </strong>PIM1 knockdown in macrophage-like THP-1 cells suppressed LPS-induced upregulation of pro-inflammatory cytokines, inducible nitric oxide synthase, cyclooxygenase-2, phosphorylated Janus kinase, signal transducer and activator of transcription 3, extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, and nuclear factor kappa B p65 (NF-κB p65). It also suppressed upregulation of inhibitor of NF-κB kinase α/β and enhanced the nuclear translocation of NF-κB p65. Moreover, it inhibited the upregulation of Nod-like receptor family pyrin domain-containing 3 (NLRP3) and cleavage of caspase-1 induced by co-treatment of LPS with adenosine triphosphate. Additionally, p-transforming growth factor-β-activated kinase 1 (TAK1) interacted with Pim-1. All three members of Pim kinases (Pim-1, Pim-2, and Pim-3) were required for LPS-mediated inflammation in macrophages; however, unlike Pim-1 and Pim-3, Pim-2 functioned as a negative regulator of T cell activity.</p><p><strong>Conclusions: </strong>Pim-1 interacts with TAK1 in LPS-induced inflammatory responses and is involved in MAPK/NF-κB/NLRP3 signaling pathways. Additionally, considering the negative regulatory role of Pim-2 in T cells, further in-depth studies on their respective functions are needed.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1671-1685"},"PeriodicalIF":4.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RIP3 regulates doxorubicin-induced intestinal mucositis via FUT2-mediated α-1,2-fucosylation. RIP3通过FUT2介导的α-1,2-岩藻糖基化调节多柔比星诱导的肠粘膜炎。
IF 4.8 3区 医学
Inflammation Research Pub Date : 2024-10-01 Epub Date: 2024-08-24 DOI: 10.1007/s00011-024-01932-2
Wei Wen, Xiaomin Hu, Jialin Liu, Fanxin Zeng, Yihua Xu, Ye Yuan, Chunyan Gao, Xueting Sun, Bo Cheng, Jue Wang, Xinli Hu, Rui-Ping Xiao, Xing Chen, Xiuqin Zhang
{"title":"RIP3 regulates doxorubicin-induced intestinal mucositis via FUT2-mediated α-1,2-fucosylation.","authors":"Wei Wen, Xiaomin Hu, Jialin Liu, Fanxin Zeng, Yihua Xu, Ye Yuan, Chunyan Gao, Xueting Sun, Bo Cheng, Jue Wang, Xinli Hu, Rui-Ping Xiao, Xing Chen, Xiuqin Zhang","doi":"10.1007/s00011-024-01932-2","DOIUrl":"10.1007/s00011-024-01932-2","url":null,"abstract":"<p><strong>Objective: </strong>Intestinal mucositis is one of the common side effects of anti-cancer chemotherapy. However, the molecular mechanisms involved in mucositis development remain incompletely understood. In this study, we investigated the function of receptor-interacting protein kinase 3 (RIP3/RIPK3) in regulating doxorubicin-induced intestinal mucositis and its potential mechanisms.</p><p><strong>Methods: </strong>Intestinal mucositis animal models were induced in mice for in vivo studies. Rat intestinal cell line IEC-6 was used for in vitro studies. RNA‑seq was used to explore the transcriptomic changes in doxorubicin-induced intestinal mucositis. Intact glycopeptide characterization using mass spectrometry was applied to identify α-1,2-fucosylated proteins associated with mucositis.</p><p><strong>Results: </strong>Doxorubicin treatment increased RIP3 expression in the intestine and caused severe intestinal mucositis in the mice, depletion of RIP3 abolished doxorubicin-induced intestinal mucositis. RIP3-mediated doxorubicin-induced mucositis did not depend on mixed lineage kinase domain-like (MLKL) but on α-1,2-fucosyltransferase 2 (FUT2)-catalyzed α-1,2-fucosylation on inflammation-related proteins. Deficiency of MLKL did not affect intestinal mucositis, whereas inhibition of α-1,2-fucosylation by 2-deoxy-D-galactose (2dGal) profoundly attenuated doxorubicin-induced inflammation and mucositis.</p><p><strong>Conclusions: </strong>RIP3-FUT2 pathway is a central node in doxorubicin-induced intestinal mucositis. Targeting intestinal RIP3 and/or FUT2-mediated α-1,2-fucosylation may provide potential targets for preventing chemotherapy-induced intestinal mucositis.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1781-1801"},"PeriodicalIF":4.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信