Bilirubin metabolism and its application in disease prevention: mechanisms and research advances.

IF 4.8 3区 医学 Q2 CELL BIOLOGY
Yue Zhang, Haoni Luan, Peng Song
{"title":"Bilirubin metabolism and its application in disease prevention: mechanisms and research advances.","authors":"Yue Zhang, Haoni Luan, Peng Song","doi":"10.1007/s00011-025-02049-w","DOIUrl":null,"url":null,"abstract":"<p><p>The role of bilirubin, a product of heme metabolism, has evolved from a traditionally perceived metabolic waste product to a critical molecule with diverse biological roles. This article comprehensively reviews the metabolic functions of bilirubin and advances in its application for disease prevention. Bilirubin is primarily derived from hemoglobin catabolism in senescent erythrocytes. It is subsequently metabolized and excreted by the liver through tightly regulated processes involving enzymes, nuclear receptors, hormones, and pharmaceuticals. Bilirubin exhibits diverse physiological functions, including antioxidant, anti-inflammatory, and immunomodulatory activities. Owing to its unique chemical structure, bilirubin scavenges free radicals, inhibits lipid peroxidation, and protects cells across multiple systems. By suppressing the NF-κB signaling pathway, it reduces inflammatory factor release and mitigates chronic inflammation. Additionally, it modulates immune cell activity to maintain homeostasis, offering therapeutic potential for autoimmune and infectious diseases. Bilirubin demonstrates significant potential in disease prevention. In cardiovascular diseases, it attenuates atherosclerosis and mitigates myocardial ischemia/reperfusion injury. For metabolic disorders, it improves insulin resistance, regulates blood glucose, and reduces hepatic steatosis, offering therapeutic benefits for diabetes and non-alcoholic fatty liver disease. In neurological conditions, its antioxidant and anti-inflammatory properties hold promise for preventing and managing neurodegenerative diseases and neonatal bilirubin encephalopathy. Although research on bilirubin has advanced significantly, its intracellular targets and molecular interaction networks remain incompletely understood, and numerous challenges hinder its clinical translation. Future efforts should leverage multi-omics technologies to elucidate its mechanisms, develop intelligent and personalized therapeutics, and conduct large-scale clinical trials to accelerate translational applications and improve patient outcomes.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":"74 1","pages":"81"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00011-025-02049-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The role of bilirubin, a product of heme metabolism, has evolved from a traditionally perceived metabolic waste product to a critical molecule with diverse biological roles. This article comprehensively reviews the metabolic functions of bilirubin and advances in its application for disease prevention. Bilirubin is primarily derived from hemoglobin catabolism in senescent erythrocytes. It is subsequently metabolized and excreted by the liver through tightly regulated processes involving enzymes, nuclear receptors, hormones, and pharmaceuticals. Bilirubin exhibits diverse physiological functions, including antioxidant, anti-inflammatory, and immunomodulatory activities. Owing to its unique chemical structure, bilirubin scavenges free radicals, inhibits lipid peroxidation, and protects cells across multiple systems. By suppressing the NF-κB signaling pathway, it reduces inflammatory factor release and mitigates chronic inflammation. Additionally, it modulates immune cell activity to maintain homeostasis, offering therapeutic potential for autoimmune and infectious diseases. Bilirubin demonstrates significant potential in disease prevention. In cardiovascular diseases, it attenuates atherosclerosis and mitigates myocardial ischemia/reperfusion injury. For metabolic disorders, it improves insulin resistance, regulates blood glucose, and reduces hepatic steatosis, offering therapeutic benefits for diabetes and non-alcoholic fatty liver disease. In neurological conditions, its antioxidant and anti-inflammatory properties hold promise for preventing and managing neurodegenerative diseases and neonatal bilirubin encephalopathy. Although research on bilirubin has advanced significantly, its intracellular targets and molecular interaction networks remain incompletely understood, and numerous challenges hinder its clinical translation. Future efforts should leverage multi-omics technologies to elucidate its mechanisms, develop intelligent and personalized therapeutics, and conduct large-scale clinical trials to accelerate translational applications and improve patient outcomes.

胆红素代谢及其在疾病预防中的应用:机制与研究进展。
作为血红素代谢的产物,胆红素的作用已经从传统意义上的代谢废物演变为具有多种生物学作用的关键分子。本文综述了胆红素的代谢功能及其在疾病预防中的应用进展。胆红素主要来源于衰老红细胞的血红蛋白分解代谢。随后,它通过酶、核受体、激素和药物等严格调控的过程被肝脏代谢和排泄。胆红素具有多种生理功能,包括抗氧化、抗炎和免疫调节活性。由于其独特的化学结构,胆红素清除自由基,抑制脂质过氧化,并在多个系统中保护细胞。通过抑制NF-κB信号通路,减少炎症因子释放,减轻慢性炎症。此外,它调节免疫细胞活性以维持体内平衡,为自身免疫性和感染性疾病提供治疗潜力。胆红素在疾病预防方面显示出显著的潜力。在心血管疾病中,它能减轻动脉粥样硬化,减轻心肌缺血/再灌注损伤。对于代谢紊乱,它改善胰岛素抵抗,调节血糖,减少肝脂肪变性,为糖尿病和非酒精性脂肪肝疾病提供治疗益处。在神经系统疾病中,其抗氧化和抗炎特性有望预防和管理神经退行性疾病和新生儿胆红素脑病。尽管对胆红素的研究取得了显著进展,但其细胞内靶点和分子相互作用网络仍不完全清楚,许多挑战阻碍了其临床转化。未来的努力应该利用多组学技术来阐明其机制,开发智能和个性化的治疗方法,并进行大规模的临床试验,以加速转化应用和改善患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inflammation Research
Inflammation Research 医学-免疫学
CiteScore
9.90
自引率
1.50%
发文量
134
审稿时长
3-8 weeks
期刊介绍: Inflammation Research (IR) publishes peer-reviewed papers on all aspects of inflammation and related fields including histopathology, immunological mechanisms, gene expression, mediators, experimental models, clinical investigations and the effect of drugs. Related fields are broadly defined and include for instance, allergy and asthma, shock, pain, joint damage, skin disease as well as clinical trials of relevant drugs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信