Aswathy S Nair, Lloyd Tauro, Harshit B Joshi, Arnab Makhal, Teddy Sobczak, Julien Goret, Antoine Dewitte, Srinivas Kaveri, Harinath Chakrapani, Maria Mamani Matsuda, Manjunath B Joshi
{"title":"同型半胱氨酸对调节免疫血栓形成的影响:感染管理的机制和治疗潜力。","authors":"Aswathy S Nair, Lloyd Tauro, Harshit B Joshi, Arnab Makhal, Teddy Sobczak, Julien Goret, Antoine Dewitte, Srinivas Kaveri, Harinath Chakrapani, Maria Mamani Matsuda, Manjunath B Joshi","doi":"10.1007/s00011-025-02045-0","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanisms controlling innate immune responses and coagulation are interdependent, evolutionarily entangled and make a complex network to form immuno-thrombosis axis which is an integral part of host-defence response. During infections, immunothrombosis generates intravascular scaffold enabling recognition, trap and destruction of pathogens facilitating tissue integrity. However, the accompanying dysregulation fosters into pathologies associated with thrombosis and regulates severity, morbidity and mortality in infections. Several extrinsic and intrinsic factors such as (epi)genetic mechanisms, age, metabolism and lifestyle regulate immunothrombosis during infections. Mounting evidence demonstrates that homocysteine, a metabolic intermediate of methionine synthesis pathway activate cells participating in immuno-thrombosis such as neutrophils, platelets, monocytes and endothelial cells. Interestingly, multiple infections are significantly associated with perturbed homocysteine metabolism. In the present review, we describe mechanistic insights into how homocysteine drives immuno-thrombotic crosstalk that generate a vicious cycle of inflammation and coagulation that fuels organ failure during infections with an emphasis on sepsis, COVID-19, and other infectious diseases caused by parasites, viral, and bacterial pathogens. Subsequently, we discuss therapeutic strategies targeting homocysteine metabolism that may improve clinical outcomes in infections.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":"74 1","pages":"86"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103384/pdf/","citationCount":"0","resultStr":"{\"title\":\"Influence of homocysteine on regulating immunothrombosis: mechanisms and therapeutic potential in management of infections.\",\"authors\":\"Aswathy S Nair, Lloyd Tauro, Harshit B Joshi, Arnab Makhal, Teddy Sobczak, Julien Goret, Antoine Dewitte, Srinivas Kaveri, Harinath Chakrapani, Maria Mamani Matsuda, Manjunath B Joshi\",\"doi\":\"10.1007/s00011-025-02045-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mechanisms controlling innate immune responses and coagulation are interdependent, evolutionarily entangled and make a complex network to form immuno-thrombosis axis which is an integral part of host-defence response. During infections, immunothrombosis generates intravascular scaffold enabling recognition, trap and destruction of pathogens facilitating tissue integrity. However, the accompanying dysregulation fosters into pathologies associated with thrombosis and regulates severity, morbidity and mortality in infections. Several extrinsic and intrinsic factors such as (epi)genetic mechanisms, age, metabolism and lifestyle regulate immunothrombosis during infections. Mounting evidence demonstrates that homocysteine, a metabolic intermediate of methionine synthesis pathway activate cells participating in immuno-thrombosis such as neutrophils, platelets, monocytes and endothelial cells. Interestingly, multiple infections are significantly associated with perturbed homocysteine metabolism. In the present review, we describe mechanistic insights into how homocysteine drives immuno-thrombotic crosstalk that generate a vicious cycle of inflammation and coagulation that fuels organ failure during infections with an emphasis on sepsis, COVID-19, and other infectious diseases caused by parasites, viral, and bacterial pathogens. Subsequently, we discuss therapeutic strategies targeting homocysteine metabolism that may improve clinical outcomes in infections.</p>\",\"PeriodicalId\":13550,\"journal\":{\"name\":\"Inflammation Research\",\"volume\":\"74 1\",\"pages\":\"86\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103384/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00011-025-02045-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00011-025-02045-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Influence of homocysteine on regulating immunothrombosis: mechanisms and therapeutic potential in management of infections.
Mechanisms controlling innate immune responses and coagulation are interdependent, evolutionarily entangled and make a complex network to form immuno-thrombosis axis which is an integral part of host-defence response. During infections, immunothrombosis generates intravascular scaffold enabling recognition, trap and destruction of pathogens facilitating tissue integrity. However, the accompanying dysregulation fosters into pathologies associated with thrombosis and regulates severity, morbidity and mortality in infections. Several extrinsic and intrinsic factors such as (epi)genetic mechanisms, age, metabolism and lifestyle regulate immunothrombosis during infections. Mounting evidence demonstrates that homocysteine, a metabolic intermediate of methionine synthesis pathway activate cells participating in immuno-thrombosis such as neutrophils, platelets, monocytes and endothelial cells. Interestingly, multiple infections are significantly associated with perturbed homocysteine metabolism. In the present review, we describe mechanistic insights into how homocysteine drives immuno-thrombotic crosstalk that generate a vicious cycle of inflammation and coagulation that fuels organ failure during infections with an emphasis on sepsis, COVID-19, and other infectious diseases caused by parasites, viral, and bacterial pathogens. Subsequently, we discuss therapeutic strategies targeting homocysteine metabolism that may improve clinical outcomes in infections.
期刊介绍:
Inflammation Research (IR) publishes peer-reviewed papers on all aspects of inflammation and related fields including histopathology, immunological mechanisms, gene expression, mediators, experimental models, clinical investigations and the effect of drugs. Related fields are broadly defined and include for instance, allergy and asthma, shock, pain, joint damage, skin disease as well as clinical trials of relevant drugs.