{"title":"Outside Front Cover: (Biotechnology Journal 6/2024)","authors":"","doi":"10.1002/biot.202470072","DOIUrl":"https://doi.org/10.1002/biot.202470072","url":null,"abstract":"<p>The cover image is based on the Research Article <i>Unlocking the formate utilization of wild-type Yarrowia lipolytica through adaptive laboratory evolution</i> by Qian Chen et al., https://doi.org/10.1002/biot.202400290.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 6","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202470072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Truncation of a novel C-terminal domain of a β-glucanase improves its thermal stability and specific activity","authors":"Anastasia Klemanska, Kelly Dwyer, Gary Walsh","doi":"10.1002/biot.202400245","DOIUrl":"10.1002/biot.202400245","url":null,"abstract":"<p>Enzymes that degrade β-glucan play important roles in various industries, including those related to brewing, animal feed, and health care. Csph16A, an endo-β-1,3(4)-glucanase encoded by a gene from the halotolerant, xerotolerant, and radiotrophic black fungus <i>Cladosporium sphaerospermum</i>, was cloned and expressed in <i>Pichia pastoris</i>. Two isoforms (Csph16A.1 and Csph16A.2) are produced, arising from differential glycosylation. The proteins were predicted to contain a catalytic Lam16A domain, along with a C-terminal domain (CTD) of unknown function which exhibits minimal secondary structure. Employing PCR-mediated gene truncation, the CTD of Csph16A was excised to assess its functional impact on the enzyme and determine potential alterations in biotechnologically relevant characteristics. The truncated mutant, Csph16A-ΔC, exhibited significantly enhanced thermal stability at 50°C, with D-values 14.8 and 23.5 times greater than those of Csph16A.1 and Csph16A.2, respectively. Moreover, Csph16A-ΔC demonstrated a 20%–25% increase in halotolerance at 1.25 and 1.5 M NaCl, respectively, compared to the full-length enzymes. Notably, specific activity against cereal β-glucan, lichenan, and curdlan was increased by up to 238%. This study represents the first characterization of a glucanase from the stress-tolerant fungus <i>C. sphaerospermum</i> and the first report of a halotolerant and engineered endo-β-1,3(4)-glucanase. Additionally, it sheds light on a group of endo-β-1,3(4)-glucanases from Antarctic rock-inhabiting black fungi harboring a Lam16A catalytic domain and a novel CTD of unknown function.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 8","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202400245","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ramprasad Anushikaa, S. Shree Ganesh, Venkadesan Sri Swetha Victoria, Abinaya Shanmugavadivu, Krishnaraj Lavanya, Sundaravadhanan Lekhavadhani, Nagarajan Selvamurugan
{"title":"3D-printed titanium scaffolds loaded with gelatin hydrogel containing strontium-doped silver nanoparticles promote osteoblast differentiation and antibacterial activity for bone tissue engineering","authors":"Ramprasad Anushikaa, S. Shree Ganesh, Venkadesan Sri Swetha Victoria, Abinaya Shanmugavadivu, Krishnaraj Lavanya, Sundaravadhanan Lekhavadhani, Nagarajan Selvamurugan","doi":"10.1002/biot.202400288","DOIUrl":"10.1002/biot.202400288","url":null,"abstract":"<p>Bone tissue engineering offers a promising alternative to stimulate the regeneration of damaged tissue, overcoming the limitations of conventional autografts and allografts. Recently, titanium alloy (Ti) implants have garnered significant attention for treating critical-sized bone defects, especially with the advancement of 3D printing technology. Although Ti alloys have impressive versatility, their lack of cellular adhesion, osteogenic and antibacterial properties are significant factors that contribute to their failure. Hence, to overcome these obstacles, this study aimed to incorporate osteoinductive and antibacterial cue-loaded hydrogels into 3D-printed Ti (3D-Ti) scaffolds. 3D-Ti scaffolds were synthesized using the direct metal laser sintering method and loaded with a gelatin (Gel) hydrogel containing strontium-doped silver nanoparticles (Sr-Ag NPs). Compared with Ag NPs, Sr-doped Ag NPs increased the expression of Runx2 mRNA, which is a key bone transcription factor. We subjected the bioactive 3D-hybrid scaffolds (3D-Ti/Gel/Sr-Ag NPs) to physicochemical and material characterization, followed by cytocompatibility and osteogenic evaluation. The microporous and macroporous topographies of the scaffolds with Sr-Ag NPs showed increased Runx2 expression and matrix mineralization, with potent antibacterial properties. Therefore, the 3D-Ti scaffolds incorporated with Sr-Ag NP-loaded Gel hydrogels favored osteoblast differentiation and antibacterial activity, indicating their potential for orthopedic applications.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 8","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rebecca E. Sizer, Richard M. Ingram, Caroline Swan, Emma K. Biggs, Leon P. Pybus, Robert J. White
{"title":"Use of tRNA gene barriers improves stability of transgene expression in CHO cells","authors":"Rebecca E. Sizer, Richard M. Ingram, Caroline Swan, Emma K. Biggs, Leon P. Pybus, Robert J. White","doi":"10.1002/biot.202400196","DOIUrl":"10.1002/biot.202400196","url":null,"abstract":"<p>Instability of transgene expression is a major challenge for the biopharmaceutical industry, which can impact yields and regulatory approval. Some tRNA genes (tDNAs) can resist epigenetic silencing, the principal mechanism of expression instability, and protect adjacent genes against the spread of repressive heterochromatin. We have taken two naturally occurring clusters of human tDNAs and tested their ability to reduce epigenetic silencing of transgenes integrated into the genome of Chinese hamster ovary (CHO) cells. We find sustained improvements in productivity both in adherent CHO-K1 cells and in an industrially relevant CHO-DG44 expression system (Apollo X, FUJIFILM Diosynth Biotechnologies). We conclude that specific tDNA clusters offer potential to mitigate the widespread problem of production instability.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 8","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202400196","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protein multi-level structure feature-integrated deep learning method for mutational effect prediction","authors":"Ai-Ping Pang, Yongsheng Luo, Junping Zhou, Xue Cai, Lianggang Huang, Bo Zhang, Zhi-Qiang Liu, Yu-Guo Zheng","doi":"10.1002/biot.202400203","DOIUrl":"10.1002/biot.202400203","url":null,"abstract":"<p>Through iterative rounds of mutation and selection, proteins can be engineered to enhance their desired biological functions. Nevertheless, identifying optimal mutation sites for directed evolution remains challenging due to the vastness of the protein sequence landscape and the epistatic mutational effects across residues. To address this challenge, we introduce MLSmut, a deep learning-based approach that leverages multi-level structural features of proteins. MLSmut extracts salient information from protein co-evolution, sequence semantics, and geometric features to predict the mutational effect. Extensive benchmark evaluations on 10 single-site and two multi-site deep mutation scanning datasets demonstrate that MLSmut surpasses existing methods in predicting mutational outcomes. To overcome the limited training data availability, we employ a two-stage training strategy: initial coarse-tuning on a large corpus of unlabeled protein data followed by fine-tuning on a curated dataset of 40−100 experimental measurements. This approach enables our model to achieve satisfactory performance on downstream protein prediction tasks. Importantly, our model holds the potential to predict the mutational effects of any protein sequence. Collectively, these findings suggest that our approach can substantially reduce the reliance on laborious wet lab experiments and deepen our understanding of the intricate relationships between mutations and protein function.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 8","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Linhui Gao, Kun Zhang, Yiwei Shen, Peng Cai, Yongjin J. Zhou
{"title":"Engineering a versatile yeast platform for sesquiterpene production from glucose or methanol","authors":"Linhui Gao, Kun Zhang, Yiwei Shen, Peng Cai, Yongjin J. Zhou","doi":"10.1002/biot.202400261","DOIUrl":"10.1002/biot.202400261","url":null,"abstract":"<p>Natural sesquiterpene are valuable compounds with diverse applications in industries, such as cosmetics and energy. Microbial synthesis offers a promising way for sesquiterpene production. Methanol, can be synthesized from CO<sub>2</sub> and solar energy, serves as a sustainable carbon source. However, it is still a challenge to utilize methanol for the synthesis of value-added compounds. <i>Pichia pastoris</i> (syn. <i>Komagataella phaffii</i>), known for its efficient utilization of glucose and methanol, has been widely used in protein synthesis. With advancements in technology, <i>P. pastoris</i> is gradually engineered for chemicals production. Here, we successfully achieved the synthesis of α-bisabolene in <i>P. pastoris</i> with dual carbon sources by expressing the α-bisabolene synthase gene under constitutive promoters. We systematically analyzed the effects of different steps in the mevalonate (MVA) pathway when methanol or glucose was used as the carbon source. Our finding revealed that the sesquiterpene synthase module significantly increased the production when methanol was used. While the metabolic modules <i>MK</i> and <i>PMK</i> greatly improved carbon source utilization, cell growth, and titer when glucose was used. Additionally, we demonstrated the synthesis of β-farnesene from dual carbon source by replacing the α-bisabolene synthase with a β-farnesene synthase. This study establishes a platform strain that is capable to synthesize sesquiterpene from different carbon sources in <i>P. pastoris</i>. Moreover, it paves the way for the development of <i>P. pastoris</i> as a high-efficiency microbial cell factory for producing various chemicals, and lays foundation for large-scale synthesis of high value-added chemicals efficiently from methanol in <i>P. pastoris</i>.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 8","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Through virtual saturation mutagenesis and rational design for superior substrate conversion in engineered d-amino acid oxidase","authors":"Heng Tang, Hong-Li Zhu, Jin-Qiao Zhao, Liu-Yu Wang, Ya-Ping Xue, Yu-Guo Zheng","doi":"10.1002/biot.202400287","DOIUrl":"10.1002/biot.202400287","url":null,"abstract":"<p>The <span>d</span>-amino acid oxidase (DAAO) is pivotal in obtaining optically pure <span>l</span>-glufosinate (<span>l</span>-PPT) by converting <span>d</span>-glufosinate (<span>d</span>-PPT) to its deamination product. We screened and designed a <i>Rasamsonia emersonii</i> DAAO (<i>Re</i>DAAO), making it more suitable for oxidizing <span>d</span>-PPT. Using Caver 3.0, we delineated three substrate binding pockets and, via alanine scanning, identified nearby key residues. Pinpointing key residues influencing activity, we applied virtual saturation mutagenesis (VSM), and experimentally validated mutants which reduced substrate binding energy. Analysis of positive mutants revealed elongated side-chain prevalence in substrate binding pocket periphery. Although computer-aided approaches can rapidly identify advantageous mutants and guide further design, the mutations obtained in the first round may not be suitable for combination with other advantageous mutations. Therefore, each round of combination requires reasonable iteration. Employing VSM-assisted screening multiple times and after four rounds of combining mutations, we ultimately obtained a mutant, N53V/F57Q/V94R/V242R, resulting in a mutant with a 5097% increase in enzyme activity compared to the wild type. It provides valuable insights into the structural determinants of enzyme activity and introduces a novel rational design procedure.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 7","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lianggang Huang, Ningning Li, Yixin Song, Jie Gao, Lu Nian, Junping Zhou, Bo Zhang, Zhiqiang Liu, Yuguo Zheng
{"title":"Development of a marker recyclable CRISPR/Cas9 system for scarless and multigene editing in Fusarium fujikuroi","authors":"Lianggang Huang, Ningning Li, Yixin Song, Jie Gao, Lu Nian, Junping Zhou, Bo Zhang, Zhiqiang Liu, Yuguo Zheng","doi":"10.1002/biot.202400164","DOIUrl":"10.1002/biot.202400164","url":null,"abstract":"<p>Iterative metabolic engineering of <i>Fusarium fujikuroi</i> has traditionally been hampered by its low homologous recombination efficiency and scarcity of genetic markers. Thus, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas9) system has emerged as a promising tool for precise genome editing in this organism. Some integrated CRISPR/Cas9 strategies have been used to engineer <i>F. fujikuroi</i> to improve GA3 production capabilities, but low editing efficiency and possible genomic instability became the major obstacle. Herein, we developed a marker recyclable CRISPR/Cas9 system for scarless and multigene editing in <i>F. fujikuroi</i>. This system, based on an autonomously replicating sequence, demonstrated the capability of a single plasmid harboring all editing components to achieve 100%, 75%, and 37.5% editing efficiency for single, double, and triple gene targets, respectively. Remarkably, even with a reduction in homologous arms to 50 bp, we achieved a 12.5% gene editing efficiency. By employing this system, we successfully achieved multicopy integration of the truncated 3-hydroxy-3-methyl glutaryl coenzyme A reductase gene (<i>tHMGR</i>), leading to enhanced GA3 production. A key advantage of our plasmid-based gene editing approach was the ability to recycle selective markers through a simplified protoplast preparation and recovery process, which eliminated the need for additional genetic markers. These findings demonstrated that the single-plasmid CRISPR/Cas9 system enables rapid and precise multiple gene deletions/integrations, laying a solid foundation for future metabolic engineering efforts aimed at industrial GA3 production.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 7","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chi Chi, Xiuwu Tang, Wei Liu, Ying Zhou, Rong Jiang, Youguo Chen, Min Li
{"title":"Exosomal lncRNA USP30-AS1 activates the Wnt/β-catenin signaling pathway to promote cervical cancer progression via stabilization of β-catenin by USP30","authors":"Chi Chi, Xiuwu Tang, Wei Liu, Ying Zhou, Rong Jiang, Youguo Chen, Min Li","doi":"10.1002/biot.202300653","DOIUrl":"10.1002/biot.202300653","url":null,"abstract":"<p>Cervical cancer (CC) remains a major cause of cancer-related mortality among women globally. Long noncoding RNAs (lncRNAs) play crucial regulatory roles in various cancers, including CC. This study investigates the function of a novel lncRNA, USP30 antisense RNA 1 (USP30-AS1), in CC tumorigenesis. We analyzed USP30-AS1 expression using RT-qPCR and conducted in vitro loss-of-function assays, as well as in vivo assays, to evaluate the effects of USP30-AS1 silencing on CC cell growth and migration. Additional mechanistic experiments, including RNA pull-down, RNA immunoprecipitation (RIP), and co-immunoprecipitation (Co-IP) assays, were performed to elucidate the regulatory mechanisms influenced by USP30-AS1. We discovered that USP30-AS1 is overexpressed in CC tissues and cells. Silencing USP30-AS1 significantly reduced cell proliferation, migration, invasion, and tumor growth. Moreover, USP30-AS1 was found to modulate the expression of ubiquitin-specific peptidase 30 (USP30) by sponging microRNA-2467-3p (miR-2467-3p) and recruiting the FUS RNA binding protein (FUS), thereby stabilizing β-catenin and activating the Wnt/β-catenin signaling pathway. These findings suggest that USP30-AS1 enhances CC cell growth and migration through the miR-2467-3p/FUS/USP30 axis, highlighting its potential as a biomarker for CC.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 7","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}