GOLPH3-STIP1复合物通过外泌体分泌激活STAT3诱导结肠癌转移

IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Yanta Guo, Zhongshi Hong, Sifu Huang, Yuze Wu, Chengzhi Qiu, Jianhua Xu
{"title":"GOLPH3-STIP1复合物通过外泌体分泌激活STAT3诱导结肠癌转移","authors":"Yanta Guo,&nbsp;Zhongshi Hong,&nbsp;Sifu Huang,&nbsp;Yuze Wu,&nbsp;Chengzhi Qiu,&nbsp;Jianhua Xu","doi":"10.1002/biot.202400563","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>With a high mortality rate, colon cancer (CC) is the third most common malignant tumor worldwide. The primary causes are thought to be the high invasiveness and migration of CC cells. The functions of Golgi phosphoprotein 3 (GOLPH3), stress-induced phosphoprotein 1 (STIP1), and the signal transducer and activator of transcription 3 (STAT3) signaling pathway in the invasion and migration of CC cells were examined in this study. We collected the exosomes by high-speed centrifugation. The expressions of GOLPH3, STIP1, and epithelial-mesenchymal transition (EMT)-related proteins in CC tissues, cells, and exosomes were analyzed using Western blotting (WB) experiments. The abilities of CC cell invasion and migration were evaluated by the Transwell assay. The binding relationship between GOLPH3 and STIP1 was validated through Co-immunoprecipitation (Co-IP), and their sublocalization in CC cells was determined by immunofluorescence detection under laser confocal microscopy. Immunohistochemistry (IHC) experiments detected the expression levels of each protein in the transplanted tumor mass. Animal experiments confirmed the impact of the GOLPH3/STIP1/STAT3 regulatory axis on CC growth. We found that in CC tissues and cells, GOLPH3 was highly expressed, and silencing GOLPH3 not only greatly reduced CC cell invasion and migration but also prevented EMT. Furthermore, GOLPH3 and STIP1 interacted in CC cells, and the GOLPH3-STIP1 complex affected the capacity for cell invasion and migration by triggering the STAT3 signaling pathway. Noteworthily, GOLPH3, and STIP1 could also be detected in CC cell exosomes, and the exosomes carried the GOLPH3-ST1P1 complex to act on CC cells to activate intracellular STAT3 signaling, ultimately affecting the cancer cell migration and invasion. The above molecular regulatory mechanisms have also been validated in mice. In conclusion, the GOLPH3-STIP1 complex acted on surrounding CC cells through exosomes and activated the STAT3 signaling pathway to stimulate CC cell invasion and migration.</p>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GOLPH3-STIP1 Complex Activates STAT3 Through Exosome Secretion to Induce Colon Cancer Metastasis\",\"authors\":\"Yanta Guo,&nbsp;Zhongshi Hong,&nbsp;Sifu Huang,&nbsp;Yuze Wu,&nbsp;Chengzhi Qiu,&nbsp;Jianhua Xu\",\"doi\":\"10.1002/biot.202400563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>With a high mortality rate, colon cancer (CC) is the third most common malignant tumor worldwide. The primary causes are thought to be the high invasiveness and migration of CC cells. The functions of Golgi phosphoprotein 3 (GOLPH3), stress-induced phosphoprotein 1 (STIP1), and the signal transducer and activator of transcription 3 (STAT3) signaling pathway in the invasion and migration of CC cells were examined in this study. We collected the exosomes by high-speed centrifugation. The expressions of GOLPH3, STIP1, and epithelial-mesenchymal transition (EMT)-related proteins in CC tissues, cells, and exosomes were analyzed using Western blotting (WB) experiments. The abilities of CC cell invasion and migration were evaluated by the Transwell assay. The binding relationship between GOLPH3 and STIP1 was validated through Co-immunoprecipitation (Co-IP), and their sublocalization in CC cells was determined by immunofluorescence detection under laser confocal microscopy. Immunohistochemistry (IHC) experiments detected the expression levels of each protein in the transplanted tumor mass. Animal experiments confirmed the impact of the GOLPH3/STIP1/STAT3 regulatory axis on CC growth. We found that in CC tissues and cells, GOLPH3 was highly expressed, and silencing GOLPH3 not only greatly reduced CC cell invasion and migration but also prevented EMT. Furthermore, GOLPH3 and STIP1 interacted in CC cells, and the GOLPH3-STIP1 complex affected the capacity for cell invasion and migration by triggering the STAT3 signaling pathway. Noteworthily, GOLPH3, and STIP1 could also be detected in CC cell exosomes, and the exosomes carried the GOLPH3-ST1P1 complex to act on CC cells to activate intracellular STAT3 signaling, ultimately affecting the cancer cell migration and invasion. The above molecular regulatory mechanisms have also been validated in mice. In conclusion, the GOLPH3-STIP1 complex acted on surrounding CC cells through exosomes and activated the STAT3 signaling pathway to stimulate CC cell invasion and migration.</p>\\n </div>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"19 12\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400563\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400563","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

结肠癌(CC)死亡率高,是全球第三大最常见的恶性肿瘤。主要原因被认为是CC细胞的高侵袭性和迁移性。本研究探讨了高尔基磷酸化蛋白3 (GOLPH3)、应激诱导磷酸化蛋白1 (STIP1)和转录信号转导和激活因子3 (STAT3)信号通路在CC细胞侵袭和迁移中的作用。我们通过高速离心收集外泌体。采用Western blotting (WB)实验分析CC组织、细胞和外泌体中GOLPH3、STIP1和上皮间充质转化(epithelial-mesenchymal transition, EMT)相关蛋白的表达。采用Transwell法评价CC细胞的侵袭和迁移能力。通过共免疫沉淀(Co-IP)验证GOLPH3和STIP1的结合关系,并在激光共聚焦显微镜下通过免疫荧光检测确定其在CC细胞中的亚定位。免疫组化(IHC)实验检测各蛋白在移植肿瘤块中的表达水平。动物实验证实了GOLPH3/STIP1/STAT3调控轴对CC生长的影响。我们发现,在CC组织和细胞中,GOLPH3高表达,沉默GOLPH3不仅可以大大减少CC细胞的侵袭和迁移,还可以阻止EMT。此外,GOLPH3和STIP1在CC细胞中相互作用,GOLPH3-STIP1复合物通过触发STAT3信号通路影响细胞侵袭和迁移的能力。值得注意的是,GOLPH3和STIP1也可以在CC细胞外泌体中检测到,并且外泌体携带GOLPH3- st1p1复合物作用于CC细胞激活细胞内STAT3信号,最终影响癌细胞的迁移和侵袭。上述分子调控机制在小鼠中也得到了验证。综上所述,GOLPH3-STIP1复合物通过外泌体作用于周围CC细胞,激活STAT3信号通路,刺激CC细胞侵袭和迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

GOLPH3-STIP1 Complex Activates STAT3 Through Exosome Secretion to Induce Colon Cancer Metastasis

GOLPH3-STIP1 Complex Activates STAT3 Through Exosome Secretion to Induce Colon Cancer Metastasis

With a high mortality rate, colon cancer (CC) is the third most common malignant tumor worldwide. The primary causes are thought to be the high invasiveness and migration of CC cells. The functions of Golgi phosphoprotein 3 (GOLPH3), stress-induced phosphoprotein 1 (STIP1), and the signal transducer and activator of transcription 3 (STAT3) signaling pathway in the invasion and migration of CC cells were examined in this study. We collected the exosomes by high-speed centrifugation. The expressions of GOLPH3, STIP1, and epithelial-mesenchymal transition (EMT)-related proteins in CC tissues, cells, and exosomes were analyzed using Western blotting (WB) experiments. The abilities of CC cell invasion and migration were evaluated by the Transwell assay. The binding relationship between GOLPH3 and STIP1 was validated through Co-immunoprecipitation (Co-IP), and their sublocalization in CC cells was determined by immunofluorescence detection under laser confocal microscopy. Immunohistochemistry (IHC) experiments detected the expression levels of each protein in the transplanted tumor mass. Animal experiments confirmed the impact of the GOLPH3/STIP1/STAT3 regulatory axis on CC growth. We found that in CC tissues and cells, GOLPH3 was highly expressed, and silencing GOLPH3 not only greatly reduced CC cell invasion and migration but also prevented EMT. Furthermore, GOLPH3 and STIP1 interacted in CC cells, and the GOLPH3-STIP1 complex affected the capacity for cell invasion and migration by triggering the STAT3 signaling pathway. Noteworthily, GOLPH3, and STIP1 could also be detected in CC cell exosomes, and the exosomes carried the GOLPH3-ST1P1 complex to act on CC cells to activate intracellular STAT3 signaling, ultimately affecting the cancer cell migration and invasion. The above molecular regulatory mechanisms have also been validated in mice. In conclusion, the GOLPH3-STIP1 complex acted on surrounding CC cells through exosomes and activated the STAT3 signaling pathway to stimulate CC cell invasion and migration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信